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AbstractÐA general theory is presented for the axisymmetric indentation of piezoelectric solids within the
context of fully coupled, transversely isotropic elasticity models. Explicit expressions for P±h curves are de-
rived for spherical, conical as well as cylindrical punch indenter geometries in a manner that can be directly
related to the experimental measurements. In addition, results for di�erent electrical boundary conditions
that employ conducting or insulating indenters are also presented. The theory reveals that the indentation
load vs penetration depth, and the contact area vs penetration depth relations have the same mathematical
structure as the classical elastic indentation problem. It is, however, demonstrated that the electric ®eld
induced during indentation as a result of the electrical±mechanical coupling can resist or aid in the pen-
etration of the indenter into the piezoelectric material depending on the electrical conductivity of the inden-
ter and the surface boundary conditions of the indented substrate. It is also shown that the piezoelectric
material exhibits pile-up or sink-in of material around the indenter as a consequence of electromechanical
coupling, despite the absence of any inelastic deformation processes or strain hardening. The theoretical
predictions are corroborated with detailed ®nite-element simulations for di�erent indenter geometries. The
theoretical results facilitate the prediction of some transient electrical e�ects which can be used in conjunc-
tion with experiments for the estimation of some of the elastic, dielectric and piezolectric constants during
instrumented indentation. Speci®c examples and details of such applications are addressed in separate
papers. # 1999 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Indentation; Ceramics, functional; Electric properties, piezoelectricities; Mechanical properties,
elastic; Theory and modeling

1. INTRODUCTION

Theories of indentation of elastic and elastoplas-

tic materials and their applications to the mech-

anical design, characterization and testing of

materials have been topics of interest to engin-

eers and scientists for well over a century (e.g.

Refs [1±3]). With the rapid expansion of modern

materials engineering, there is, however, a grow-

ing list of non-traditional materials which are

increasingly used for their fully coupled, mechan-

ical±nonmechanical characteristics. Piezoelectric

solids represent a broad class of materials whose

electrical±mechanical coupling has led to import-

ant engineering applications in such products as

sensors, actuators and ``smart'' structures (e.g.

Ref. [4]).

Indentation of piezoelectric solids represents a

topic of considerable scienti®c and technological

interest on many accounts. (1) Piezoelectric ma-

terials are used in some ``contact-prone'' appli-

cations, wherein indentation analysis would

provide the basic foundation for developing an

understanding of the mechanics of contact. (2)

With the advent of sophisticated instrumented

indenters, probing of materials at the macro-,

micro-, and nano-scales is fast becoming a tool
for the testing of material properties (e.g. Refs [5±

7]). Instrumented indentation can potentially o�er
a powerful new tool for the characterization of
the mechanical and electrical properties of piezo-

electric materials in thin-®lm and bulk form. (3)
As shown later in this work and in companion

papers [8, 9], a continuous record of some mech-
anical and electrical responses during instrumen-

ted indentation can serve as a guide for
monitoring such characteristics as the poling

direction, ageing response and activation energy
for depolarization.

There have been some prior attempts at the
development of continuum solutions for the

indentation of piezoelectric solids for a limited
set of indenter geometries and indentation bound-

ary conditions [10]. To date, however, no general
theory of indentation has been reported for

piezoelectric materials where the ``forward'' pro-
blem of indentation mechanics and the ``inverse''

problem of property characterization have been
fully addressed for di�erent geometries of inden-
ters that are commercially available. It is also

desirable to develop a theory which provides
explicit analytical expressions linking the key par-
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ameters of indentation, such as the indentation
force, P, as a function of the depth of pen-

etration, h, of the indenter into the material,
which can be directly measured in experiments.
Motivated by these considerations, the objective

of the present work was to develop a general theory
for the axisymmetric indentation of piezoelectric
solids within the context of fully coupled, transver-

sely isotropic elasticity models. The governing
equations and the formulation of the boundary
value problem for general axisymmetric indenters of

spherical, conical and cylindrical punch geometries
are outlined in Section 2. Theoretical results for the
¯at-end axisymmetric cylindrical punch, conical
indenter and spherical indenter are then presented

in Section 3, for di�erent electrical boundary con-
ditions. In this section, explicit expressions for P±h
curves are derived in a manner that can be directly

related to the experimental measurements. Section 4
provides numerical corroboration of the theory by
recourse to ®nite-element analyses. The paper con-

cludes with Section 5 with a summary of ®ndings.

2. THEORETICAL FORMULATION

2.1. Basic geometry and nomenclature

Consider the planar surface of a piezoelectric
material which is normally contacted by an axi-
symmetric indenter, as shown in Figs 1(a)±(c).

The in-plane dimensions and the thickness of the
indented material (normal to the indented sur-
face) are much larger (i.e. at least six times lar-

ger) than the diameter, 2a, of the largest imprint
made on it by the indenter. In the cylindrical
coordinate system employed in Fig. 1, the in-
plane radial direction is denoted by r, while the

out-of-plane direction by z; at the indented sur-
face, z = 0. The in-plane angular position is
denoted by y. The depth of penetration of the

indenter into the substrate is h, in response to
the indentation force P. The axis of polarization
of the indented piezoelectric material coincides

with the z axis. In the following discussion of
material properties, the subscripts ``3'' denote
properties along the poling direction whereas the
subscripts ``1'' and ``2'' represent those in two

mutually orthogonal in-plane directions.
The process modelled here represents quasi-static,

frictionless, normal indentation of a transversely iso-

tropic, piezoelectric material by an axisymmetric
rigid indenter. Planar isotropy along the poled axis (z
axis) is assumed with the result that an electric ®eld

parallel to the poling axis interacts in the same way
with the axial stress along any radial direction.
Similarly, an electric ®eld parallel to any in-plane

radial direction interacts in the same way with a
shear stress srz in the corresponding rz-plane. The
shear strain in the 1±2 plane (i.e. the plane of the
indented surface) is not excited piezoelectrically. The

present analysis deals with small strains and small
electric displacements.

2.2. Governing equations

In the absence of body and inertia forces, the
equilibrium equations, written in terms of stress
components sij, are:

@srr
@r
� @srz
@z
� srr ÿ syy

r
� 0,

@srz
@ r
� @szz
@z
� srz

r
� 0: �1�

The geometric conditions which relate small strains
and displacements are

Err � @ur
@r

, Eyy � ur
r
, Ezz � @uz

@z
, grz �

@ur
@z
� @uz
@r
�2�

Fig. 1. Schematic of the normal indentation of piezoelec-
tric materials. (a) Flat-ended cylindrical punch. (b)

Conical indenter. (c) Spherical indenter.
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where Eij are the components of the strain tensor

and ui are the components of the displacement vec-

tor. The Maxwell electrostatic equation, in the

absence of volume electric charges, is

@Dr

@r
�Dr

r
� @Dz

@z
� 0 �3�

where Dr(r,z) and Dz(r,z) are the radial and axial

electric displacements, respectively. The Gauss

equations give the electric ¯ux vector

Er � ÿ @f
@ r

, Ez � ÿ @f
@z

�4�

where f(r,z) is the electric potential. In the absence

of thermal strains, the constitutive equations of lin-

ear piezoelectricity (the so-called Duhamel±

Neumann relations) are

srr � c11Err � c12Eyy � c13Ezz ÿ e31Ez,

syy � c12Err � c11Eyy � c13Ezz ÿ e31Ez �5a�

szz � c13
ÿ
Err � Eyy

�� c33Ezz ÿ e33Ez,

srz � c44grz ÿ e15Er �5b�
where cij are the elastic constants for constant elec-

tric ¯ux, and eij are the piezoelectric constants for

transverse isotropy. Note that any pre-existing re-

sidual stresses or strains do not have any e�ect on

elastic indentation.

The electric displacements are in¯uenced by the

strains and the electric ¯uxes according to the re-

lations

Dr � e15grz � e11Er,

Dz � e31
ÿ
Err � Eyy

�� e33Ezz � e33Ez �6�

where eii are the dielectric constants for transverse

isotropy at constant strain. Substituting

equations (3)±(5a), (5b) and (6) into equations (1)

and (2), we obtain the reduced problem in terms of

the principal quantities (ur, uz, f):

c11

�
@ 2ur
@ r2
� 1

r

@ur
@ r
ÿ ur

r2

�
� c44

@ 2ur
@r2
� ÿc13

�c44
� @ 2uz
@r@z
� ÿe31 � e15

� @ 2f
@r@z

� 0 �7�

c44

�
@ 2uz
@ r2
� 1

r

@uz
@r

�
� c33

@ 2uz
@z2
� ÿc13

�c44
� @
@z

�
@ur
@ r
� ur

r

�
� e15

�
@ 2f
@r2
� 1

r

@f
@ r

�

�e33 @
2f
@z2
� 0 �8�

e15

�
@ 2uz
@ r2
� 1

r

@uz
@r

�
� e33

@ 2uz
@z2
� ÿe15

�e31
� @
@z

�
@ur
@ r
� ur

r

�
ÿ e11

�
@ 2f
@ r2
� 1

r

@f
@r

�

ÿe33 @
2f
@z2
� 0: �9�

2.3. Formulation of the boundary value problem

The rigid axisymmetric indenters considered here
include the ¯at-ended cylindrical punch, sphere and
circular cone. For each of these indenter geometries,
two electrical states are examined (Fig. 1): (a) the

indenter is a perfect electric insulator with a known
radial distribution of electric charge at its surface;
and (b) the indenter is a perfect electric conductor

with a known radial distribution of electric poten-
tial at its surface. The monotonically advancing
contact, which is a circular disc of radius a, between

the indenter and the substrate, is non-conforming.
2.3.1. Mechanical boundary conditions. The mech-

anical displacements ur and uz, and the electric po-

tential f are required, for all the indenter
geometries, to have continuous second derivatives,
and to vanish at distances far away from the con-
tact region, i.e. ur, uz, f 4 o(1/

��������������
z2 � r2
p

)4 0 as��������������
z2 � r2
p ÿÿÿ41. Inside the contact area, 0RrRa,
the mechanical boundary conditions must satisfy
the applied displacements. This condition implies

that for the ¯at-ended cylindrical punch, Fig. 1(a),
uz(r,0) = h. For a conical indenter with an included
apex angle 2a, Fig. 1(b), and for the spherical

indenter with a diameter 2R, respectively,

uz�r,0� � hÿ �aÿ r� cota �cone�;

uz�r,0� � hÿ r2

2R
�sphere�: �10�

For all three indenters,

srz�r,0� � 0; rr0, szz�r,0� � 0; r > a: �11�
For a smooth transition of deformation at the con-

tact perimeter (r = a), the continuity condition
should hold such that szz(a,0) = 0. The ®rst of the
expressions in equation (11) indicates the absence of

frictional or other applied shear tractions, whereas
the latter indicates the absence of any applied nor-
mal loads outside the contact region.
2.3.2. Electrical boundary conditions. When all

three indenters are perfect electrical conductors with
a constant potential f0,

f�r,0� � f0 for 0Rr<a, Dz�r,0� � 0 for r > a: �12�
The ®rst of these equations indicates that the poten-
tial of the indenter is also the potential of the sub-
strate within the contact area, whereas the second

GIANNAKOPOULOS and SURESH: INDENTATION OF PIEZOELECTRIC MATERIALS 2155



equation shows that the electric charge distribution
outside the contact area is zero.

When all three indenters are perfect electrical
insulators with a zero electric charge distribution,

Dz�r,0� � 0; rr0: �13�
Equation (13) indicates that the electric charge dis-
tribution of the surface is zero. The above con-
ditions reduce to two well-posed, mixed boundary

value problems which have unique solutions.

2.4. General solution to the boundary value problem

In view of the axisymmetry of the problem,
Hankel-type integral transformations are employed
to derive a general solution. For this purpose, con-

sider the transformation of mechanical displace-
ments and electrical potential with respect to the
radial direction r: (ur, uz, f) 4 (�ur(x,z), �uz(x,z),
�f(x,z)) [11]. Now apply the integral transformation,�1
0 J1(xr)dr on equation (7) and

�1
0 J0(xr)dr on

equations (8) and (9), where J0 and J1 are the zer-

oeth and ®rst-order Bessel functions, respectively,
and x is the radial coordinate in the transformed
space. Then, the partial di�erential equations (7)±
(9) tranform to a homogeneous system of ordinary

di�erential equations of �ur(x,z), �uz(x,z) and �f(x,z),
with respect to z. There are three ordinary
equations with three unknowns; hence, from stan-

dard methodology, a general exponential form,
eÿkxz, of the solution for the transformed principal
variables results. The parameter k must satisfy the

characteristic (3�3) determinant of the system of
ordinary di�erential equations

det
�
aij
� � 0: �14�

The same equations were derived in Ref. [12] using
a di�erent method involving potential theory, for

some aspects of the point force indentation pro-
blem. The characteristic equation [equation (14)] is
of sixth order and has two real roots, k=2k1 and

four complex roots k =2 (d2 io) (i=
�������ÿ1p

). Here,
it is assumed that all roots are distinct (without loss
of generality, k1, d are taken positive de®nite and o
non-negative). In order to satisfy the regularity con-

dition, i.e. ur, uz, f 4 o(1/
��������������
z2 � r2
p

)4 0 as��������������
z2 � r2
p ÿÿÿ41, we select k = k1 as the real root.
k1, d, o can then be found by simplifying the coe�-

cients aij (e.g. Ref. [10])

a11 � c44k
2 ÿ c11, a12 � ÿa21 �

ÿ
c13 � c44

�
k,

a22 � c33k
2 ÿ c44, a13 � a31 � ÿ

ÿ
e31 � e15

�
k1,

a23 � ÿa32 � ÿe33k2 � e15,

a33 � e33k21 ÿ e11: �15�
Evaluating the coe�cients aij for k = k1, the follow-
ing parameters are de®ned:

a1 � a12a23 ÿ a13a22, b1 � ÿa11a23 ÿ a12a13,

g1 � a11a22 � a212: �16�
Then, the additional constants a21, . . . ,g22 are

obtained from d and o through the complex identi-

ties

a21 � ia22 � a1�d� io �, b21 � ib22 � b1�d� io �,

g21 � ig22 � g1�d� io �: �17�
Taking into account the regularity condition again,

the Hankel-transformed solution is

�ur�x,z� � a1A1�x�eÿk1xz �
ÿ
a21A2�x�

ÿ a22A3�x�
�
eÿdxz cos�oxz�

� ÿa22A2�x�

� a21A3�x�
�
eÿdxz sin�oxz� �18�

�uz�x,z� � b1A1�x�eÿk1xz �
ÿ
b21A2�x�

ÿ b22A3�x�
�
eÿdxz cos�oxz�

� ÿb22A2�x�

� b21A3�x�
�
eÿdxz sin�oxz� �19�

ÿ�f�x,z� � g1A1�x�eÿk1xz �
ÿ
g21A2�x�

ÿ g22A3�x�
�
eÿdxz cos�oxz�

� ÿg22A2�x�

� g21A3�x�
�
eÿdxz sin�oxz�: �20�

The functions A1(x), A2(x), A3(x) have to be

determined from the boundary conditions. Inverting

the Hankel transforms we obtain the general rep-

resentation of the solution. It is clear that all mech-

anical and electrical constants interact through the

characteristic equation, equation (14), in a very

complex way. For the uncoupled problem, for

eij = 0, we recover separately the classic, transversly

isotropic, purely mechanical conical indentation [13],

or spherical indentation [14], and the rigid dielectric

electrostatic results [15].

The solution at the surface (z = 0) can be rep-

resented in a general form as

uz�r,0� �
�1
0

ÿ
b1A1�x� � b21A2�x�

ÿ b22A3�x�
�
J0�xr�dx �21�

srz�r,0� �
�1
0

ÿ
m1A1�x� �m2A2�x�

ÿm3A3�x�
�
xJ1�xr�dx �22�
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szz�r,0� �
�1
0

�
m1

k1
A1�x� �m2d�m3o

d2 � o 2
A2�x�

ÿm3dÿm2o

d2 � o 2
A3�x�

�
xJ0�xr�dx �23�

f�r,0� � ÿ
�1
0

ÿ
g1A1�x� � g21A2�x�

ÿ g22A3�x�
�
J0�xr�dx �24�

Dz�r,0� �
�1
0

�
m4

k1
A1�x� �m5d�m6o

d2 � o 2
A2�x�

ÿm6dÿm5o

d2 � o 2
A3�x�

�
xJ0�xr�dx �25�

where the constants mi are de®ned in Appendix A.

The solution at regions far away from the indented
area

ÿ ��������������
z2 � r2
p ÿÿÿ41� tend asymptotically to the

point force and point charge results [12].
For frictionless contact, the shear stress at the

surface is zero [srz(r,0) = 0]. Then, since m3$0,
equation (22) gives

A3�x� � m1

m3
A1�x� �m2

m3
A2�x� �26�

which eliminates the A3(x) function. The remaining

unknown functions A1(x) and A2(x) can be found
from the surface electrical and mechanical bound-
ary conditions. Such solutions will be described, for
the di�erent electrical boundary conditions, for the

three indenter geometries in Section 3.
Some general results can be found from the

boundary conditions at the surface (z = 0). The sec-

ond part of equation (5b) gives grz = e15Er/c44, indi-
cating that the shear strain at the surface is not
zero, although the shear stress is. At the surface

and away from the contact perimeter (rra),
szz(r,0) = 0 and Dz(r,0) = 0. Then, equations (5b)
and (6) giveÿ
Err � Eyy

�ÿ
c13e33 � e31e33

�� Ezz
ÿ
c33e33 � e33e33

�
� 0: �27�

For typical piezoelectric ceramics, (c13e33 + e31e33)
>0, (c33e33 + e33e33)>0 and Ezz < 0. Therefore,

(Err + Eyy)>0, indicating that tensile strains develop
outside the contact area at the surface. Such tensile
strains may be reduced if a tensile axial and/or a

compressive radial pre-strain due to electrical or
mechanical loading are present. Alternatively, the
surface tensile strains could be reduced, if the ratio

of the material constant (c33e33 + e33e33)/
(c13e33 + e31e33) is minimized.

3. GENERAL RESULTS

We now outline the general theoretical results for
the three indenter geometries shown in Fig. 1 for
the two boundary conditions involving the conduct-

ing or the insulated indenter. The results are derived
in closed form for the following general quantities:

indenter penetration depth into the substrate, h;
contact pressure, p(r) [which at the indented surface
is simply equal to ÿszz(r,0) for 0RrRa]; the resul-

tant force, P, which can be found by integrating
p(r) such that

P � 2p
�a
0

rp�r�dr �28�

and the displacements, uz(a,0), at the contact per-

imeter which account for the pile-up [uz(a,0)>0] or
sink-in [uz(a,0) < 0] of the material around the
indenter. In addition, the following speci®c quan-

tities are derived for the case of a conducting inden-
ter: the electric charge distribution under the
indenter, q(r) =ÿDz(r,0) (0RrRa); and the total

electric charge, Q, under the indenter which can be
found by integrating q(r):

Q � 2p
�a
0

rq�r�dr: �29�

For the insulated indenter, on the other hand, the

electric potential distribution at the surface within
the contact area, f(r,0), was also computed.
Table 1 shows the derived expressions for h, p(r),

P, uz(a,0), q(r) and Q, in terms of the various ma-

terial constants and indenter geometrical dimen-
sions de®ned previously, for the poled piezoelectric
solid which is indented by a conducting cylindrical

punch, cone or sphere. Table 2 shows the corre-
sponding expressions for h, p(r), P, uz(a,0), and
f(r,0), for the poled piezoelectric solid which is

indented by an insulated cylindrical punch, cone or
sphere. (The constants M1±M10 are de®ned in
Appendix A.) Note that the results in Tables 1 and
2 reduce to the known mechanical indentation

results, shown in Table 3, for transversely isotropic
elastic solids indented by the punch, cone and
sphere in the absence of any piezoelectric e�ect (i.e.

when M3 = 0 and M7 = 0).
Additional features of the results of Tables 1 and

2, which are applicable to speci®c indenter geome-

tries and boundary conditions, are given below. All
the results reported in Tables 1 and 2 as well as in
the following subsections reduce to the known

results [12] for the indentation of piezoelectric ma-
terials by a point force or point charge at regions
far away from the indenter contact area, i.e. for
(r2 + z2)>>a2.

3.1. Flat-ended cylindrical punch

3.1.1. Conducting indenter. For the ¯at-ended

punch, the penetration depth h remains uniformly
the same within the contact area (Table 1). The sur-
face deformation outside the contact perimeter,
however, varies with radial distance as
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uz�r,0� � 2

p
h arcsin

�
a

r

�
for rra: �30�

The contact pressure exhibits the classic square

root singularity of the uncoupled mechanical case

at the contact perimeter. However, a mechanical

displacement due to the potential f0 is additionally

present, and the contact pressure is therefore modi-

®ed due to the coupling.

For stability of mechanical loading, the resultant

force should increase with increasing penetration

such that @P/@hr0, with zero only when

P = h= 0. Then, the stability condition becomesÿ
M5M4 ÿM6M3

�� ÿM4M1 ÿM2M3

�
> 0: �31�

Table 1. Poled substrate±conducting indenter

(¯at) h= constant
(conical)

h � 1

2
�pa cota� �M1M6 ÿM2M5

M4M5 ÿM3M6
f0

(spherical)
h � a2

R
�
�
M1M6 ÿM2M5

M4M5 ÿM3M6

�
f0

(¯at)
p�r� � 2h

ÿ
M5M4 ÿM6M3

�ÿ 2f0

ÿ
M6M1 ÿM2M5

�
p
ÿ
M1M4 ÿM2M3

� ���������������
a2 ÿ r2
p

(conical)
p�r� � cota

�
M4M5 ÿM3M6

M1M4 ÿM2M3

�
arccosh

a

r

(spherical)
p�r� � 4

pR

�
M4M5 ÿM3M6

M1M4 ÿM2M3

� ���������������
a2 ÿ r2
p

(¯at)
P � 4a

h
ÿ
M5M4 ÿM6M3

�ÿ f0

ÿ
M6M1 ÿM2M5

�ÿ
M1M4 ÿM2M3

�" #

(conical)
P � pa2 cota

�
M4M5 ÿM3M6

M1M4 ÿM2M3

�

(spherical)
P � 8

3

�
M4M5 ÿM3M6

M1M4 ÿM2M3

�
a3

R

(¯at) uz(a,0) = h
(conical)

uz�a,0� �
�
p
2
ÿ 1

�
a cota�

�
M1M6 ÿM2M5

M4M5 ÿM3M6

�
f0

(spherical)
uz�a,0� � a2

2R
�
�
M1M6 ÿM2M5

M4M5 ÿM3M6

�
f0

(¯at)
q�r� � ÿ 2h

ÿ
M7M4 ÿM8M3

�ÿ 2f0

ÿ
M1M8 ÿM2M7

�
p
ÿ
M1M4 ÿM2M3

� ���������������
a2 ÿ r2
p

(conical)
q�r� � 2f0

ÿ
M1M8 ÿM2M7

�ÿ ÿM7M4 ÿM8M3

��2hÿ pa cota�
p

���������������
a2 ÿ r2
p ÿ

M1M4 ÿM2M3

� � cota
�
M7M4 ÿM8M3

M1M4 ÿM2M3

�
arccosh

a

r

(spherical)
q�r� � 2f0

ÿ
M1M8 ÿM2M7

�ÿ ÿM7M4 ÿM8M3

�ÿ
2hÿ 2a2=R

�
p

���������������
a2 ÿ r2
p ÿ

M1M4 ÿM2M3

� � 4

pR

�
M7M4 ÿM8M3

M1M4 ÿM2M3

� ���������������
a2 ÿ r2
p

(¯at)
Q � 4a

f0

ÿ
M1M8 ÿM2M7

�ÿ h
ÿ
M7M4 ÿM8M3

�ÿ
M1M4 ÿM2M3

�" #

(conical)
Q � pa2 cota

�
M7M4 ÿM8M3

M1M4 ÿM2M3

�
� 2a

2f0

ÿ
M1M8 ÿM2M7

�ÿ ÿM7M4 ÿM8M3

��2hÿ pa cota�
M1M4 ÿM2M3

(spherical)
Q � 16

3

�
M7M4 ÿM8M3

M1M4 ÿM2M3

�
a3

2R
� 4a

f0

ÿ
M1M8 ÿM2M7

�ÿ ÿM7M4 ÿM8M3

�ÿ
hÿ a2=R

�
M1M4 ÿM2M3

� �

GIANNAKOPOULOS and SURESH: INDENTATION OF PIEZOELECTRIC MATERIALS2158



The contribution from the potential f0 acts either

in favor of or against the normal indentation dis-

placement h. For the particular case of

h
ÿ
M5M4 ÿM6M3

� � f0

ÿ
M6M1 ÿM2M5

� �32�
p(r) = 0, P = 0 (i.e. the net mechanical force is

exactly countered by the resistance from the electric

®eld) and the stresses under the indented surface

are minimized. Conversely, even in the absence of

an electric potential, an electric charge could ac-

cumulate at the surface due to the applied load or

displacement. There is a combination of load and

potential such that the electric charge does not exist

under the punch:

h
ÿ
M7M4 ÿM8M3

� � f0

ÿ
M8M1 ÿM2M7

�
: �33�

Then, q(r) = 0, Q= 0 (i.e. the net electric charge is

exactly countered by the resistance from the mech-

anical displacement).

The electric potential outside the contact per-

imeter is

f�r,0� � 2

p
f0 arcsin

�
a

r

�
for rra: �34�

3.1.2. Insulated indenter. The surface deformation
outside the contact area for this case is the same as
that shown in equation (30). The contact pressure

shows a square root singularity (Table 2).
A perfectly insulated indenter with zero distribu-

ted electric charge creates a constant electric poten-
tial, fq, inside the contact area. The electric

potential outside the contact perimeter is similar to
the perfect conductor case, equation (34).
For stability, @P/@hr0, with zero only when

P = h= 0. Then, the stability condition becomesÿ
M5M8 ÿM7M3

�ÿ
M8M1 ÿM2M7

�
> 0: �35�

3.2. Circular cone

3.2.1. Conducting indenter. The results shown in
Tables 1 and 2 for the conical indenter were
obtained directly using the Hankel transformation

Table 2. Poled substrate±insulating indenter

Quantity Flat punch Conical punch Spherical punch

h= constant pa cota
2

a2

R

p(r)= 2h
ÿ
M5M8 ÿM6M7

�
p
ÿ
M1M8 ÿM2M7

� ���������������
a2 ÿ r2
p cota

M8M5 ÿM7M6

M1M8 ÿM2M7
arccosh

a

r

4

pR
M8M5 ÿM7M6

M1M8 ÿM2M7

���������������
a2 ÿ r2
p

P =
4a

h
ÿ
M5M8 ÿM6M7

�ÿ
M1M8 ÿM2M7

� pa2 cota
M8M5 ÿM7M6

M1M8 ÿM2M7

8

3

M8M5 ÿM7M6

M1M8 ÿM2M7

a3

R

uz(a,0)= h
�
p
2
ÿ 1

�
a cota

a2

2R

f(r)=
fq �

h
ÿ
M3M8 ÿM4M7

�
p
ÿ
M1M8 ÿM2M7

� fq

�
p
2
cotaÿ r

a

�
fq

�
2ÿ r2

a2

�

Table 3. Uncoupled mechanical case

Quantity Flat punch Conical punch Spherical punch

h= constant pa cota
2

a2

R

p(r)= 2hM5

pM1

���������������
a2 ÿ r2
p cota

M5

M1
arccosh

a

r

4

pR
M5

M1

���������������
a2 ÿ r2
p

P =
4a

hM5

M1

pa2 cota
M5

M1

8

3

M5

M1

a3

R

uz(a,0)= h
�
p
2
ÿ 1

�
a cota

a2

2R
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method described in Section 2. These results have
also been derived, for an independent check, by lin-

ear superposition of the ¯at-punch solutions given
in Tables 1 and 2. It can be shown that the surface
values such as the contact pressure, the vertical and

the radial displacements follow the same radial
functional forms as those of the uncoupled mechan-
ical indentation solution (Table 3), although the

amplitudes are di�erent.
For f0 = 0, we recover the classic condition of

linear elasticity, h= pa cota/2. The additional part

of the indentation depth is due to displacement
induced by the constant potential, f0, of the inden-
ter. Since

arccosh
a

r
� ln

a�
��������������
a2 ÿ r2
p

aÿ
��������������
a2 ÿ r2
p �36�

at the contact center (r4 0), the contact stresses
p(r) have a logarithmic singularity.
The P±a dependence is the same as the

uncoupled mechanical case. The P±h functional
form also follows the classic mechanical result,
P0h2. Note that the indenter's electrical potential,

f0, does not explicitly in¯uence the applied load, P.
For f0 = 0, we recover the classic sink-in solution
of the uncoupled mechanical solution,
uz (a,0) = ((p/2)ÿ 1)a cota. However, a non-zero

potential could lead to a pile-up or reduce the mag-
nitude of sink-in from the pure mechanical case.
In addition to the electrical potential, the mech-

anical load also induces an electric charge under the
indenter (Table 1). Note that the electric charge
shows a square root singularity at the contact per-

imeter (r = a) and a logarithmic singularity at the
center of contact (r = 0).
3.2.2. Insulated indenter. The relation between the

penetration depth, h, and the contact radius, a, as

well as the P±h relation are exactly as in the pure
mechanical case. Since the potential is zero, the
contact perimeter (r= a) always sinks in according

to the pure mechanical result.
If the potential for the ¯at-ended cylindrical

punch is fq, then at the center of contact of the

conical indenter, the potential is given by

f�0,0� � fq

p
2
cota: �37�

Similarly, at the contact perimeter (r = a), the po-

tential for the cone is smaller than that for the
punch:

f�a,0� � fq

�
p
2
cotaÿ 1

�
: �38�

3.3. Spherical indenter

3.3.1. Conducting indenter. From the results pre-
sented in Table 1 for the spherical indenter, we
recover the classic condition of linear elasticity,

h= 2a2/D for f0 = 0. The additional part of the
indentation depth is due to displacement induced

by the constant potential, f0, of the indenter.
The conducting spherical indenter shows the

same P±a variation as the uncoupled mechanical

case. In the case of zero electrical potential
(f0 = 0), the P±h functional form follows the clas-
sic mechanical result, P0h3/2.

In addition to the electrical potential, the mech-
anical load also induces an electric charge under the
indenter. Note that the electric charge shows a

square root singularity at the contact perimeter
(r= a), as shown in Table 1. The net charge is
zero, Q= 0, if

3p
�
f0

ÿ
M1M8 ÿM2M7

�ÿ ÿM7M4

ÿM8M3

��
hÿ a2

R

��

� ÿ 4a2

R

ÿ
M7M4 ÿM8M3

� �39�

indicating that zero net charge under the indenter

can be achieved with certain combinations of load,
P, and electric potential, f0.
3.3.2. Insulated indenter. The relation between the

penetration depth, h, and the contact radius, a, as
well as the P±a relation are exactly the same as for
the uncoupled mechanical indentation. The P±h
functional form follows the classic mechanics result,

P0h3/2. Because of the absence of an electric po-
tential at the surface, the surface always sinks in:
uz(a,0) = h/2.

The maximum potential occurs at the contact
center [fmax = f(0,0)]: fmax = 2fq. The potential
at the contact perimeter is f(a,0) = fmax/2.

4. FINITE-ELEMENT SIMULATIONS

The analytical results presented in the preceding
sections were also checked with ®nite-element ana-
lyses for four speci®c piezoelectric materials: two

types of lead zirconate titanate, PZT-4 and PZT-
5A, and two types of barium titanate, BaTiO3 and
95% BaTiO3±5% CaTiO3. The relevant material
properties for these four solids are given in Table 4.

A mesh of four-noded, axisymmetric elements was
used, with progressively varying element size. The
®nal mesh had 4747 elements and 5058 nodes

(Fig. 2). A full Gauss integration scheme was used.
The ABAQUS general purpose ®nite-element
program [16] was used with some modi®cations of

the contact conditions. The program had to be sup-
plemented with a subroutine capable of handling
the electrical contact boundary conditions employed

in this work, i.e. for the electrically conducting or
insulated indenters, equations (12) and (13), respect-
ively. For this purpose, line interface elements for
the surface of the substrate (z= 0) were employed.
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The mechanical boundary conditions, equations (10)
and (11), were adopted from the standard

ABAQUS subroutines.
The contact radius, a, was resolved with 24 el-

ements. The outer boundary was at least 20a away
from the contact regime. The outer boundary con-

ditions were vertically constrained along the sides
CD and AB. In addition, sides CD and AB were
given zero electrical potential. In all cases, the

uncoupled problem (eij = 0) was also solved to ver-
ify the accuracy of the simulations with well-known
results. The contact stresses were found to be in

agreement within 5% error when compared to ana-
lytical results, excluding a small region (within an
element size) around the cone tip where the analysis
predicts a logarithmic singularity that could not be

captured by the ®nite-element analysis.

4.1. Conical indenter

For this case, two materials were analyzed: PZT-

4 [lead zirconate titanate Pb(TiZr)O3] and 95%
BaTiO3±5% CaTiO3. The stress and electric ®elds
were analyzed for the uncoupled (unpoled) case and

for the coupled (poled) case with perfect conductor
(f0 = 0). The indenter was taken to be rigid, axi-
symmetric, and of sharp conical apex with the same

angle a in all cases. A constant displacement depth,
h, was used in all calculations.
For this displacement-controlled conical indenta-

tion, the theoretical predictions of normalized

indentation force, P/(pa2 cota) and the normalized
average electric charge distribution, Q/(pa2 cota)
(see Table 1) are compared with the ®nite-element

results in Table 5. Good agreement was found in all
cases, except for the uncoupled force prediction.
Here, the logarithmic singularity at the tip of the

cone led to a computed pressure distribution which
was up to 12% less than that predicted by the the-
ory within one element of the tip. The piezoelectric

coupling sti�ens the contact response of PZT-4 (by
reducing P for ®xed h) by 8.8% relative to the
uncoupled case. Such sti�ening for the 95%
BaTiO3±5% CaTi O3 is only 2.8%.

4.2. Spherical indenter

For this case, four piezoelectric materials were

analyzed: PZT-4, PZT-5A, BaTiO3 and 95%
BaTiO3±5% CaTiO3. The sphere was taken to be
rigid and part of an axisymmetric paraboloid of the

same radius, R, in all cases. For the coupled cases,
the sphere was taken either as a perfect conductor
with zero electric potential (f0 = 0), or as a perfect

insulator with no surface electric charge distribution
[q(r) = 0]. A constant average contact pressure, P/
(pa2) = 33.84 GPa, was imposed in all calculations.

The numerically predicted normalized applied
load, P/(D1/2h3/2) and the average normalized elec-
tric charge distribution, Q(D/a3) are tabulated in
Table 6, and are compared with the analytical

results based on the equations given in Tables 1
and 2. Note that the absence of a mechanical or
electrical singularity for the spherical indenter leads

to a much better agreement between the analytical
and computational results for all four materials and
for both the electrical boundary conditions.

The piezoelectric coupling softens the contact re-
sponse of PZT-4 (relative to the uncoupled case) by
13.7% for the perfect conductor and by 25.4% for

the perfect insulator. On the other hand, the piezo-
electric coupling sti�ens the contact response of
95% BaTiO3±5% CaTiO3 by 8.8% for the perfect
conductor and by 1% for the perfect insulator.

These predictions have also been con®rmed exper-
imentally using spherical indentation [8].

5. CONCLUDING REMARKS

A general theory has been developed for the
quantitative indentation of piezoelectric materials
by axisymmetric indenters. The theory invokes a

transversly isotropic, linear piezoelectric response
for the indented solid, while allowing for di�erent
electrical boundary conditions which involve electri-

caly conducting or insulated indenters. A particu-
larly appealing feature of the theory is the
indentation force vs the depth of penetration of the
indenter into the substrate have been derived in

Table 4. Piezoelectric properties

Elastic sti�ness coe�cients (GPa) PZT-4 PZT-5A BaTiO3 (Ba0.917Ca0.083)TiO3

C11 139.00 121.00 166.00 158.00
C33 115.00 111.00 162.00 150.00
C44 25.60 21.10 42.90 45.00
C12 77.80 75.40 76.60 69.00
C13 74.30 75.20 77.50 67.50

Piezoelectric coe�cients (C/m2) PZT-4 PZT-5A BaTiO3 (Ba0.917Ca0.083)TiO3

e31 ÿ5.200 ÿ5.400 ÿ4.400 ÿ3.100
e33 15.10 15.80 18.60 13.50
e15 12.70 12.30 11.60 10.90

Dielectric constants (10ÿ9 F/m) PZT-4 PZT-5A BaTiO3 (Ba0.917Ca0.083)TiO3

E11 6.461 8.107 11.151 8.850
E33 5.620 7.346 12.567 8.054

Data from Refs [17, 18].
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Fig. 2. (a) Overall view of the ®nite-element mesh used in the present calculations. (b) Details of the
mesh close to the contact area.

Table 5. Finite-element (FE) results for conical indenter. The analytical results from Tables 1 and 3 are given within parentheses

Material Indenter P/(pa2 cosa) in GPa Q/(pa2 cosa) in C/m2

FE (Tables 1 and 3) FE (Tables 1 and 3)

PZT-4 uncoupled 4.98 (5.58) 0.00 (0.00)
conductor 4.37 (4.57) 10.95 (10.5)

95% BaTiO3±5% CaTiO3 uncoupled 7.90 (7.99) 0.00 (0.00)
conductor 8.12 (8.36) 8.80 (8.40)
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closed form for ¯at-ended cylindrical punch, circu-

lar cone and spherical indenters, in a manner
whereby direct connections can be made with exper-
imental measurements. It has been demonstrated

that the electric charge or potential at the contact-
ing surface plays an important role in determining
the resistance to indentation. The surface values of
contact stresses, as well as the electrical potential

and charges during quasi-static indentation were
found explicitly. The mechanical and electrical ®elds
below the surface were also computed. Our analysis

also reveals that the electro-mechanical coupling
can also signi®cantly alter the pile-up or sink-in of
the material around the indenter even in the

absence of any inelastic deformation processes. Key
predictions of the theory have been substantiated
with ®nite-element simulations.

The above analysis provides a scienti®c basis for
the interpretation of indentation experiments on
piezoelectric materials which, as shown in our com-
panion work [8, 9], have many potential appli-

cations for property and microstructural
characterization. Instrumented indentation can be a
quick and inexpensive preliminary test for quality

control in commercial production. In many cases,
indentation may be the only method for testing
small volumes of materials such as in thin ®lms,

layered plates or composites. On the basis of the
present analysis, it is shown in Refs [8, 9] that a
continuous record of force±depth and force±poten-

tial signals could lead to the determination of indi-
vidual or combined material properties such as
elastic moduli, dielectric and piezoelectric constants
for polycrystalline or monocrystalline materials

with up to six-fold symmetry. Indentation can also
assess e�ects such as loss of piezoelectricity due to
aging during service or storage. As an actuator

mechanism, indentation can serve as a microelectric
generator, or as ``skin'' actuator for contact devices
or micromotors. Conical or spherical indentation

can model contact-induced damage.
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APPENDIX A

Constants used in the analysis

m1 � e15g1 ÿ c44
ÿ
k1a1 � b1

� �A:1�

m2 � e15g21 ÿ c44
ÿ
da21 ÿ oa22 � b21

� �A:2�

m3 � e15g22 ÿ c44
ÿ
da22 � oa21 � b22

� �A:3�

m4 � ÿE11g1 ÿ e15
ÿ
k1a1 � b1

� �A:4�

m5 � ÿE11g21 ÿ e15
ÿ
da21 ÿ oa22 � b21

� �A:5�

m6 � ÿE11g22 ÿ e15
ÿ
da22 � oa21 � b22

� �A:6�

M1 � b1 ÿ b22
m1

m3
�A:7�

Table 6. Finite-element (FE) results for spherical indenter. The analytical results from Tables 1±3 are given within parentheses

Material Indenter P/(D1/2h3/2) in GPa Q(D/a3) in C/m2

FE (Tables 1±3) FE (Tables 1±3)

PZT-4 uncoupled 105.14 (104.30) 0.00 (0.00)
conductor 86.16 (91.50) 17.84 (18.60)
insulator 75.06 (80.60) 0.00 (0.00)

PZT-5A conductor 67.63 (68.54) 32.36 (33.02)
insulator 58.95 (60.02) 0.00 (0.00)

BaTiO3 uncoupled 121.23 (119.75) 0.00 (0.00)
conductor 124.03 (124.92) 14.44 (14.87)
insulator 122.78 (122.90) 0.00 (0.00)

95% BaTiO3±5% CaTiO3 uncoupled 150.69 (148.90) 0.00 (0.00)
conductor 157.28 (153.10) 14.34 (15.00)
insulator 157.88 (154.00) 0.00 (0.00)
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M2 � b21 ÿ b22
m2

m3
�A:8�

M3 � g1 ÿ g22
m1

m3
�A:9�

M4 � g21 ÿ g22
m2

m3
�A:10�

M5 � m1

k1
ÿm3dÿm2o

d2 � o 2

�
m1

m3

�
�A:11�

M6 � m2d�m3o

d2 � o 2
ÿm3dÿm2o

d2 � o 2

�
m2

m3

�
�A:12�

M7 � m4

k1
ÿm6dÿm5o

d2 � o 2

�
m1

m3

�
�A:13�

M8 � m5d�m6o

d2 � o 2
ÿm6dÿm5o

d2 � o 2

�
m2

m3

�
�A:14�

M9 � a1 ÿ a22
m1

m3
�A:15�

M10 � a21 ÿ a22
m2

m3
�A:16�
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