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Abstract. Elastic and incremental elasto-plastic analyses have been used to evaluate the driving force for interface
edge-crack growth initiation in tri-layered material systems subjected to a monotonic variation in temperature.
Whenever possible, closed-form solutions are derived as functions of the thermo-mechanical material properties
and the geometry of the layers. Analytical expressions for the different critical temperatures at which distinct
transitions occur in thermally induced deformation are presented and are correlated with the three regimes of
interface fracture; elastic, partially plastic and fully plastic. Furthermore, a large-scale contact model, which
predicts the shielding effect of contact in the wake of an interface crack, is also presented and the attendant
reduction in the energy release rate is estimated. Finite element results, showing the influence of layer geometry
and strain hardening on the energy release rate, are presented for a model Al2O3/Ni(Cr)/Al2O3 tri-layered system;
these simulations confirm the bounds predicted by the theory.
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1. Introduction

When layers of dissimilar materials are bonded, differences in the thermal expansion coeffi-
cients, combined with a change in temperature |�T | relative to the stress-free state, result in
thermal stresses (Suresh et al., 1994; Shen and Suresh, 1995). These stresses, along with the
singular nature of free edges (Bogy, 1971; Kuo, 1989; Cao et al., 1988; He and Evans, 1991)
or manufacturing-related edge flaws, can result in the development of interface cracks. When
these cracks form, the driving force for crack growth initiation depends on the magnitude
of stress in each layer. For small |�T | all the layers in the composite are nominally elastic.
Under these circumstances, stress is quantified by elastic and thermal expansion mismatch
and |�T |, and the driving force for interface fracture is the energy release rate G (Suo and
Hutchinson, 1990; Hutchinson and Lu, 1995; Beuth and Narayan, 1996). As |�T | increases,
a point is reached at which nominal thermal stresses in the layers exceed the elastic limits of
the materials. At this point an elasto-plastic analysis is needed. Interface fracture then has to
be predicated upon a different measure of crack driving force, such as the J -integral (Olsson
and Giannakopoulos, 1997).

The analytical and numerical study presented below is intended to elucidate the fracture
mechanics of edge-cracks in a three-layered material system (tri-layer) having sharp interfaces
and subjected to a monotonic temperature change. This type of loading and geometry is typi-
cal of diffusion-bonded solids or of thermal-barrier/wear-resistant coatings (Gaudette, 1999).
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For both these examples, the tri-layer is stress free at an elevated processing temperature but
develops thermal stresses upon cooling.

The purpose of the analysis presented in this paper was to provide a theoretical basis for
estimating the bounds for the crack driving force in layered specimens that are bonded and
then cooled to room temperature.

2. Problem formulation and material model

For the present work, only metal-ceramic layered systems are studied. This restriction has
been imposed to limit the scope. However, the methodology presented is equally applicable
to metal–metal and ceramic–ceramic systems. The materials are modeled as isotropic, elastic,
or elastic-perfectly plastic, and their plastic response is described by the rate-independent
J2-flow theory. All inelastic deformation is attributed to conventional metal plasticity; creep
is not considered. Except for the crack, the materials are assumed to be perfectly bonded, and
the crack is assumed to be stationary. If slip between layers, large deformation or material
orthotropy are of interest to the reader, the paper by (Di Sciuva et al., 1999) gives ample
information to start. Because the problem is formulated as quasi-static, inertia and body
forces are ignored. Thermal gradients or transient thermal response are not considered and
the instantaneous temperature is taken to be uniform.

The thickness of each layer (H,h, and t from Figure 1) is assumed to be significantly larger
than the dimensions of microstructural features such as grain size. The crack length, a, and
the ligament ahead of the crack tip, w, must satisfy the condition that a,w > (H + t + h), in
order to neglect edge effects. Under these circumstances any dependence of the energy release
rate on the crack length is eliminated.

A state of plane stress is considered. The actual three-dimensional thermal stresses affect
the plane stress solutions near the interface over a distance comparable to the layer thickness,
as has been shown from three-dimensional elastic calculations (Nakamura, 1991). Neverthe-
less, a plane stress model captures the essential features of the elasto-plastic deformation.
Under elastic conditions, plane stress results can be carried over for the plane strain state by
replacing the elastic modulus, E, and the coefficient of thermal expansion, α, of each layer
with E/(1 − ν2) and α(1 + ν) respectively (Suresh et al., 1994). Small strain kinematics are
assumed, with the total strain being decomposed into the elastic, plastic, and thermal parts,
εij = εelastic

ij + ε
plastic
ij + εthermal

ij , respectively.
The properties and field quantities for the metal layer are denoted by the subscript 2. All

materials are assumed to be stress free at zero initial temperature. It is sufficiently general
to model layers 1 and 3 as isotropic and linear elastic with Young’s moduli E1 and E3,
respectively. This assumption is consistent with the diffusion bonded Al2O3/ Ni(Cr)/Al2O3 tri-
layer (Gaudette et al., 1997). It is also consistent with a thermal-barrier coating deposited on
a high yield strength substrate, i.e., a Waspaloy substrate with a deposited NiCrAlY bond coat
and protective ceramic coating (Gaudette, 1999). For the purposes of obtaining closed-form
solutions, the properties of all layers are assumed to be independent of temperature; however,
a similar methodology can be used for layers with temperature dependent properties.

The paper is arranged as follows. In Section 3, elastic stress analysis is used along with the
J -integral to derive an expression for the elastic interface energy release rate. This result is
then tailored for Cases A and B, Section 4. In Section 5 an interface contact model is presented.
The model predicts the shielding effect associated with large- scale elastic contact in the wake
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Figure 1. Configurations considered for analysis: Case A, a diffusion-bonded tri-layer, and Case B, a ther-
mal-barrier/wear-resistant coating. The far-field and near-tip contours � and �′ are shown respectively.

of an interface crack. Section 6 contains analytical plasticity derivations, including those for
characteristic temperature changes required for the onset of yielding in layer 2 and for it to
yield completely. Expressions for the limiting elastic energy release rate, related to the former
temperature change, are given in Section 7.

Since the analysis for a three-layered material requires an understanding of the stress de-
velopment in the bi-layer comprising the crack wake and the tri-layer ahead of the crack tip, a
discussion of the plastic yielding sequence is presented. The results establish important bounds
on the elasto-plastic crack driving force, the J -integral, for tri-layers as discussed in Section 8.
Sections 9 and 10 present and discuss finite element results for the Al2O3/Ni(Cr)/Al2O3

tri-layer. Included are the normal and shear stress distributions, close to and ahead of, the
crack-tip.
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3. Elastic analytical results

3.1. ELASTIC INTERFACE ENERGY RELEASE RATE G

The elastic interface energy release rate, G, for a general three-layered material is presented
first. The coordinate system is located such that the y-direction is parallel to and on the layer
1/layer 2 interface (henceforth referred to as the 1–2 interface). The z-direction is normal to
the 1–2 interface at a position such that y = 0 corresponds to the location of the crack tip as
indicated in Figure 1. The method for obtaining G is analogous to evaluating the J -integral
along the contour � depicted in Figure 1 (Suo and Hutchinson, 1990).

J =
∫
�

((∫
σij dεij

)
dz − σij ηj

∂u

∂y
d�

)
+

∫∫
A

σij
∂εTij

∂y
dA . (3.1)

In Equation (3.1) εTij , σij , nj , and ui are the thermal strain tensor, the stress tensor, the vector
normal to the contour �, and the displacement vector, respectively. A is the area enclosed
by �. When ∂εTij /∂y = 0, that is for homogeneous thermal strain variations along the crack
direction, the J -integral is path independent and therefore J = G.

3.2. STRESS ANALYSIS AND ELASTIC STRAIN ENERGY

Far ahead of the crack the three layered system behaves elastically for small �T . For plane
stress the stress-strain relationship for each layer is given by:

σyy1,2,3(z) = E1,2,3
(
εo + κz − α1,2,3�T

)
, (3.2)

where E,α,�T, εo, and κ are the Young’s modulus, the coefficient of thermal expansion,
the temperature change relative to a stress free state, the strain at the 1–2 interface and the
curvature, respectively. The subscripts 1, 2, or 3 refer to the layer number.

By substituting Equation (3.2) into the force and moment equilibrium equations, Equa-
tions (3.3) and (3.4), respectively,

∫ 0

−H

σyy1(z) dz +
∫ t

0
σyy2(z) dz +

∫ h+t

t

σyy3(z) dz = 0 (3.3)

∫ 0

−H

σyy1(z)z dz +
∫ t

0
σyy2(z)z dz +

∫ h+t

t

σyy3(z)z dz = 0 , (3.4)

equations for the strain, εo and the curvature, κ , far ahead of the crack tip can be obtained,

ε0 = α2�T

(
4λ3λ4 − 3λ2λ5

4λ1λ3 − 3λ2
2

)
, κ = 6α2�T

t

(
λ1λ5 − λ2λ4

4λ1λ3 − 3λ2
2

)
. (3.5)

The dimensionless variables used in these equations are defined as:

λ1 = Xς + Zη + 1, λ2 = −Xς2 + Z
(
(η + 1)2 − 1

) + 1 ,

λ3 = Xς3 + Z
(
(η + 1)3 − 1

) + 1, λ4 = XYς + ZWη + 1 ,

λ5 = −XYς2 + ZW
(
(η + 1)2 − 1

) + 1 , (3.6)
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η = h/t, ς = H/t, θ = (ς + 1)/η, X = E1/E2, Z = E3/E2 ,

Y = α1/α2, W = α3/α2 .

By substituting Equation (3.5) into Equation (3.2), the stress distribution in each layer can be
obtained and then,

U = U

ab
= 1

2

3∑
i=1

∫ Zi

Zi−1

(σyyi (z))
2

Ei

dz (3.7)

gives the total elastic strain energy stored in the tri-layer far ahead of the crack tip. Equa-
tion (3.7) is the elastic strain energy normalized by the in-plane area (ab), where b is the
specimen width and a is the crack length.

When an interface crack is located between layers 2 and 3, the tri-layer behaves as a
perfectly bonded bi-layer with layers 1 and 2 (z < t) and a homogeneous layer 3 (z > t).
Since both parts of the tri-layer experience the same �T , the bi-layer has its own strain, εo,
and curvature, κ . In the absence of contact for y < 0, εo and κ for the bi-layer can be obtained
from Equation (3.5) by setting η = h/t = 0:

ε0 − α2�T

�T (α2 − α1)
= −Xς(Xς3 + 3ς + 4)

ξ
(bi − layer) , (3.8)

κt

�T (α2 − α1)
= 6Xς(ς + 1)

ξ
(bi − layer) , (3.9)

where ξ = Xς(Xς3 + 4ς2 + 6ς + 4) + 1. Layer 3 is stress free behind the crack tip so
that ε0 = α3�T, κ = 0. When Equations (3.8) and (3.9) are substituted into Equation (3.2)
the equilibrium stress state in the bi-layer is obtained. Further substitution into Equation (3.7)
gives the normalized elastic strain energy, U

∗
, stored in the wake of the interface crack.

In the absence of external work, the elastic interface energy release rate is a result of
two processes: the release of all elastic strain energy in layer 3 and a redistribution of stress
resulting from the transition from a tri-layer for y > 0 to a bi-layer for y < 0. The elastic
interface energy release rate is given by

J = G = U − U
∗
. (3.10)

4. The energy release rate G: Cases A and B

If additional assumptions regarding the material properties of layers 1–3 are made, then Equa-
tions (3.5)–(3.9) can be simplified to yield compact expressions for G. Cases A and B are
based on two sets of assumptions. For Case A, layers 1 and 3 are elastic and have the same
material properties while layer 2 is elastic-perfectly plastic. For Case B layers 1 and 3 are
elastic and layers 1 and 2 have the same elastic properties; yet layer 2 is elastic-perfectly
plastic (typical of a thermal barrier coating with low yield strength bond coat). The purely
elastic response for each case is examined first.

For Case A, Z = X and W = Y ; thus, λ1, λ2, and λ3 simplify to λA
1 = X(η+ς)+1, λA

2 =
X(η2 − ς2 + 2η)+ 1, and λA

3 = X((η + 1)3 + ς3 − 1)+ 1. Making these substitutions along
with those for λ4 and λ5 into Equation (3.5), we obtain expressions for εo, and κ:
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εA0 − α2�T

�T (α1 − α2)
= 2X2ςη

(
2(η + ς)2 + 6(η + ς + 1) − ςη

) + X2(η4 + ς4)

4λA
1 λ

A
3 − 3(λA

2 )
2

+3X(ς2 − η2) + 2X(2ς − η)

4λA
1 λ

A
3 − 3(λA

2 )
2

= C1 ,

κAt

�T (α1 − α2)
= 6X(η2 + η − (ς2 + ς))

4λA
1 λ

A
3 − 3(λA

2 )
2

= C2 .

(4.1)

These equations have been non-dimensionalized to arrange the material properties and loading
on the left-hand side, and the moduli and geometric ratios on the right-hand side. The super-
script A indicates Case A. Substituting Equation (4.1) into Equations (3.2) and (3.7) provides
the normalized elastic strain energy, U

A
, ahead of the crack:

U
A = 1

6E2t (�T (α2 − α1))2

(
Xς

(
3(C1 − 1)2 − 3C2ς(C1 − 1) + (C2ς

)2
)

+
(
3C2

1 + 3C1C2 + C2
2

) + Xη
(
3(C1 − 1 + C2)

2 + 3C2η(C1 − 1 + C2) + (C2η)
2
))

.

(4.2)

Setting η = h/t = 0 in Equations (4.1) and (4.2), the normalized elastic strain energy for the
bi-layer, U

∗A
, in the crack wake (Suo, 1990; Olsson, 1997) is

U
∗A

E2t (�T (α2 − α1))2
= Xς(Xς3 + 1)

2ξ
. (4.3)

When h = H , there is both material and geometric symmetry. As a result, ς = η and the
(normalized) interface energy release rate simplifies to:

GA

E2t (�T (α2 − α1))2
= Xη

2(2Xη + 1)

(
Xη2(7η + 12) + 6Xη + 1

ξ ′

)
, (4.4)

where ξ ′ = Xη(Xη3 + 4η2 + 6η + 4) + 1.
For Case B, X = 1 and Y = 1. Thus, when layers 1 and 2 have the same elastic properties,

the tri-layer problem converges to the bi-layer problem. By making the substitutions X =
(1/Z), ς → θ = (ς + 1)/η,E2 → E3, E1 → E2, α2 → α3, α1 → α2, and t = h into
Equations (3.8), (3.9), and (4.3) we obtain:

εB0 − α3�T

�T (α3 − α2)
= −θ

(
(θ3/Z) + 3θ + 4

)
θ2

(
(θ2/Z) + 4θ + 6

) + 4θ + Z
,

κBh

�T (α3 − α2)
= 6θ(θ + 1)

θ2
(
(θ2/Z) + 4θ + 6

) + 4θ + Z
.

(4.5)

The superscript B indicates Case B. The resulting equation for the interface energy release
rate is then:

GB

E3h(�T (α3 − α2))2
= 1

2

θ
(
(θ3/Z) + 1

)
(θ4/Z) + θ(4θ2 + 6θ + 4) + Z

. (4.6)
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Figure 2. Modes of deformation during interface fracture in the three layered system. (a) and (c) illustrate the
conditions when large-scale contact must be accounted for. (b) and (d) illustrate the conditions when there is no
large-scale contact.

5. Interfacial contact

Equations (3.10), (4.4) and (4.6) assume there is no contact in the wake of the crack. For
the general three-layered system there are four possible modes of deformation. These modes
are shown in Figure 2. Figures 2a and 2c represent the two possible scenarios for large-scale
contact. In both instances, the unconstrained curvature of the bi-layer along the crack wake is
negative. This leads to the criterion �T (α2 − α1) < 0 for contact.

For Case B, layers 1 and 2 are elastically matched (E1 = E2, and α1 = α2). As a result,
the curvature in the wake of the crack is zero. Furthermore, the substrate, layer 1, for thermal-
barrier/wear-resistant coatings is substantially thicker than the other layers; thus there would
be negligible curvature ahead of the crack tip. Considering both of these conditions, Case B
would never experience large-scale contact in the crack wake. However, the same is not true
for Case A.

When contact occurs, the bi-layer is subjected to a superimposed mechanical stress dis-
tribution and layer 3 is no longer stress free. This results in accumulation of elastic strain
energy in the wake, causing Equation (4.4) to overestimate G. If we assume that the contact
is frictionless and that the stress distributions in layers 1–3 under these circumstances vary



332 F.G. Gaudette et al.

only in the y and z directions, then an estimate of the ‘shielding effect’ due to contact can be
obtained. By virtual work, the difference between the actual energy release rate, G(contact), and
the energy release rate without contact, G(no contact), is given by:1

�G = G(no contact) − G(contact) =
3∑

i=1

Ei

a

∫ a

0

∫ Zi

Zi−1

�ε2
yyi(mech)

(y, z) dz dy , (5.1)

where �εyyi(mech) is the change in strain distribution for layer i due to the superimposed
mechanical loads associated with contact constraint.

In order to estimate Equation (5.1), a simple contact model has been created as shown in
Figure 2. The model is based on the assumption that frictionless contact takes place at the
end of the crack at y = −a and that the contact force per unit width, P , results in curvature
compatibility between layers 1–3 at y = 0. Since equilibrium requires the contact force on
the bi-layer and layer 3 to be equal and opposite, the net effect of P is to decrease the negative
curvature of the bi-layer while creating the same curvature in layer 3. Using beam theory and
neglecting work from shear forces we obtain:

κ + Pa

EI
= −12Pa

E3h
3
, (5.2)

where EI is the mechanical flexural stiffness of the bi-layer, which relates the curvature due
to the mechanical moment per unit width, and for an orthogonal cross-section.

EI = E2t
3

12(Xς + 1)
ξ . (5.3)

When Equations (3.9) and (5.3) are substituted into Equation (5.2), an expression for the
contact force per unit width is obtained:

P = �T (α1 − α2)E3t
2

2a

Xη3ς(ς + 1)(
Zη3(Xς + 1) + ξ

) . (5.4)

The mechanical bending moment M, associated with P , is a linear function of y varying
from 0 at y = −a to Pa (−Pa for layer 3) at y = 0. At any given position along the crack
length, M(y) = (a+y)P , and the mid-plane strain and curvature for the mechanically loaded
bi-layer is:

ε0mech = 6M(η2X − 1)

E2ξ t
2

= 6P(a + y)(η2X − 1)

E2ξ t
2

,

κmech = 12M(ηX + 1)

E2ξ t3
= 12P(a + y)(η2X + 1)

E2ξ t2
.

(5.5)

Adding these two strain components to those given by Equations (3.8) and (3.9) yields an
expression for the total strain in layers 1 and 2:

ε1,2 = ε0mech + εo + κmechz + κz − α1,2�T . (5.6)

Note that the sign convention for the strain components is completely specified by Equa-
tions (5.5), (3.8) and (3.9). Substituting the total strain in layers 1 and 2 into Equation (5.1),
an expression for the shielding effect is obtained in terms of a decrease in the energy release
rate,

1This assumption is appropriate as long as a > 3(H + t) and the specimen width b < 3(H + t).
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Figure 3. The shielding effect of large-scale contact between the bi-layer at the crack wake and layer 3 for Case
A with H = h.

�G =
2∑

i=1

Ei

a

∫ 0

−a

∫ Zi

Zi−1

ε2
i dz dy + E3

a

∫ 0

−a

∫ h/2

−h/2

(
12M(y)z

E3h3

)
dz dy − 2U

∗A
. (5.7)

Figure 3 contains a plot of �G, for H = h, normalized by GA given by Equation (4.4). The
contours show the shielding effect as a percentage of the no-contact energy release rate. As
defined, this percentage represents the reduction in energy release rate resulting from contact.
It is interesting to note that this ratio does not depend on �T, α’s, the crack length or any
individual thickness parameter. For the range of E1/E2 and η shown in Figure 3, �G/GA can
be approximated by:

�G

GA
= 2X2η4(η + 1)2(2Xη + 1)

(7Xη3 + 12Xη2 + 6Xη + 1) + (2X2η4 + 5Xη3 + 6Xη2 + 4η + 1)
. (5.8)

6. Analytical results for the onset of yielding

The preceding derivations assumed elastic material response. Since most materials have a
well defined elastic limit, this assumption breaks down once a critical temperature change
is reached. For metals with yield strength, σoi; i = 1–3, the limits of elasticity are reached
when yielding within any of the three layers begins for the first time (here, far-field yielding
is the criterion used for judging the limits of elasticity for the layered beams). Beyond this
point, fracture is characterized better by the J -integral rather than the elastic interface energy
release rate, G.

Determining the critical temperature change, referred to as |�Tonset|, requires that the ab-
solute value of the maximum effective stress in each layer be compared with its yield strength.
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In the plane stress case, the yield condition is |σyyi| = |σoi|, i = 1–3. Since this always occurs
at the end of the layer, i.e. at positions zi as indicated in Figure 1, |�Tonset| is equal to the
minimum of all |�T | required to yield at least one of the layers 1, 2, or 3 at the positions zi ,
in either the tri-layer far ahead of the crack tip or the bi-layer in the crack wake.

For Case A with E1 = E3 and layers 1 and 3 elastic, yielding always begins in layer 2 at
either the 2–3 or the 1–2 interface (for the bi-layer, the 2–3 interface refers to the free surface
of layer 2 between layers 2 and 3). Making the appropriate substitutions, the temperature
changes at which yielding begins at these locations are given by:

E2|�T A
2−3(α1 − α2)|
σo2

= 1

C1 + C2
(6.1)

and

E2|�T A
1−2(α1 − α2)|
σo2

= 1

C1
, (6.2)

respectively. C1 and C2 have been defined in Equation (4.1) and σo2 is the yield strength of the
second layer. Equations (6.1) and (6.2) are also valid for the bi-layer when the substitution η =
h/t = 0 is made in C1 and C2. Here �T A

2−3 and �T A
2−3 are the temperature changes required

to start yielding layer 2 at the 1–2 and 2–3 interface respectively. When the thicknesses of
layer 1 and 3 are the same, H = h, Equations (6.1) and (6.2) give the same value indicating
that yielding occurs uniformly through the entire thickness of layer 2 for the tri-layer:

E2|�T A
2−3(α1 − α2)|
σo2

= E2|�T A
1−2(α1 − α2)|
σo2

= 1

2Xη
+ 1. (6.3)

Case A has two important temperature changes which must be compared in order to es-
tablish |�Tonset|. They are the minimum temperature changes required to start yielding in the
tri-layer and in the bi-layer. By comparing Equations (6.1) and (6.2) it can be shown that
yielding in the wake bi-layer always begins at the 1–2 interface and that yielding in the tri-
layer always begins at the interface adjacent to the thicker of layers 1 and 3. When h = H ,
layer 2 yields uniformly ahead of the crack-tip and yielding in the tri-layer precedes yielding
in the bi-layer whenever

7Xς4 + 6Xς3 − 3ς2 − 2ς > 0. (6.4)

Under these circumstances |�Tonset| = |�T A
1−2| = |�T A

2−3| for the tri-layer. For most
metal/ceramic interfaces with X > 1 and ς > 1, Equation (6.4) is generally satisfied.
Problems do, however, arise when ς = h/t 	 1. Under these circumstances, it is possible
that yielding precedes in the bi-layer at the 1–2 interface. The present work examines only the
cases when Equation (6.4) is satisfied and, therefore, yielding starts ahead of the crack-tip.

For Case B, layer 1 and 2 are elastically matched, therefore, the bi-layer does not yield.
Under these circumstances yielding always begins at the interface between layers 2 and 3 in
the tri-layer ahead of the crack-tip. The temperature at which this occurs can be found from the
bi-layer solution by substituting E1 → E2, α1 → α1, α2 → α3, σo1 → σo2, X = E1/E2 →
1/Z → E2/E3 and ς → θ = (ς + 1)/η:

E2|�T B
2−3(α3 − α2)|
σo2

=
θ2

(
θ2

Z
+ 4θ + 6

)
+ 4θ + Z

3θ2 + 4θ3 + Z
. (6.5)
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Figure 4. The limit for the elastic interface energy release rate, Gmax: (a) Case A, with geometric symmetry and
(b) Case B, with H/t = 100 (typical of thin coatings on a thick substrate).

The critical temperature change |�Tonset| is equal to |�T B
2−3|.

7. An upper bound for the energy release rate

By combining |�Tonset| with Equations (3.10), (4.4) and (4.6), upper bounds for the elastic
interface energy release rate can be obtained. For Case A with H = h, this limit is

GAE2

t (σo2)2
= 2Xη + 1

8Xη

Xη2(7η + 12) + 6Xη + 1

Xη(4(η + 1)2 + η(Xη2 − 2)) + 1
. (7.1)

This equation is plotted in Figure 4a for a range of ς = h/t = H/t = η and X = E1/E2 =
1, 3, 5, and 10 (typical Ni/Al2O3 and Al/Al2O3 interfaces have E1/E2 = 2 and 6, respectively).
Since all ς and X shown in the figure satisfy Equation (6.4), the maximum elastic driving force
is achieved just before layer 2 ahead of the crack tip yields uniformly. For further increase in
|�T |, the J -integral diverges from G due to the presence of plasticity.

For Case B, the upper bound on G can be found by substituting Equation (6.5) into
Equation (4.6) which gives:
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GBE2

h(σo2)2
=

(θ4 + θZ)

(
θ4

Z
+ θ(4θ2 + 6θ + 4) + Z

)

2(4θ3 + 3θ2 + Z)2
, (7.2)

where θ = (H + t)/h and Z = E3/E2. Figure 4b gives a plot of Equation (7.2) for H = 100t ,
typical of thin layers deposited on a thick substrate.

8. Temperatures corresponding to fully plastic layers

Further monotonic temperature change beyond |�Tonset| results in the following2: (i) the
elasto-plastic boundary propagates through the thickness of layer 2 ahead of the crack (Case A
and B), (ii) plasticity begins in layer 2 at the 1–2 interface in the wake of the crack (Case A),
and (iii) the elasto-plastic boundary propagates through the thickness of layer 2 in the wake
of the crack (Case A). For both (i) and (iii) characteristic temperature changes are reached at
which point layer 2 becomes fully plastic.

When layer 2 is elastic-perfectly plastic, analytical expressions for temperatures that result
in a fully plastic layer 2 can be obtained. For clarity these |�T | are labeled |�TFP | indicating
the temperature change where layer 2 plastifies completely for the first time.

For Case A (Shen and Suresh, 1995), |�TFP | = |�T A
FP |:

E2|�T A
FP (α1 − α2)|
σo2

= 1

Xη

(
DA

1 + DA
2

DA
3 + DA

4 + DA
5

)
,

DA
1 = 1

3 (Xη(φ + 1) + 1)
(
η2(φ3 + 1) + 3φ(ηφ + 1)

)
,

DA
2 = 1

4

(
η(φ2 − 1) + 2φ

) (
Xηφ(ηφ + 2) − Xη2 + 1

)
,

(8.1)

DA
3 = 1

12η
2(φ4 + 1), DA

4 = 1
6η

2φ(2φ2 + 3φ + 2), DA
5 = φ(ηφ + η + 1) .

In deriving these equations it is assumed that H > h, which asserts, that yielding begins at
the 1–2 interface and propagates toward the 2–3 interface. Here φ = H/h. When φ = 1,
Equation (8.1) reduces to Equation (6.3). If we define φ in terms of ς and η(φ = ς/η) and
then let η approach zero, Equation (8.1) also yields the fully plastic solution for the bi-layer
(Suresh et al., 1994).

Figure 5a contains a plot of the yielding sequence for case A as a function of h/t = H/t for
E1/E2 = 3. In this case, a three layered material with complete symmetry, yielding always
begins ahead of the crack tip. Next comes the development of plasticity in the wake of the
crack-tip at the 1–2 interface. Lastly, plasticity in the wake of the crack-tip propagates from
the 1–2 interface to the crack surface.

For Case B, |�Tonset| = |�T B
2−3| and further temperature change results in the spread of

plasticity from the 2–3 interface to the 1–2 interface ahead of the crack-tip. |�TFP | = |�T B
FP |

is given by:

|�T B
FP (α3 − α2)|E2

σo2
= 1

Zη

(
DB

1 + DB
2

DB
3 + DB

4 + DB
5

)
,

2For Case A, (i)–(iii) occur when H > h. When H = h yielding occurs uniformly ahead of the crack tip and only
(ii) and (iii) apply.
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Figure 5. The yielding sequence: (a) Case A with geometric symmetry and (b) Case B with H/t = 100 (no
yielding in the bi-layer at the crack wake).

DB
1 = 1

3(Zη + ς + 1)
(
Zη3 + 3Zη2 + ς3

)
,

DB
2 = 1

4

(−Zη(η + 2) + ς2
) (
Zη2 + 2Zη − ς2 + 1

)
,

(8.2)

DB
3 = Zη3

12
, DB

4 = ης2

(
ς

3η
+ 1

4

)
, DB

5 = ς2

2
.

Figure 5b contains a plot of the normalized |�T(onset)| and |�TFP | temperatures as a function
of h/t for H = 100t and E3/E2 = 3. The close proximity of the two lines indicates that the
temperature change required to go from an elastic solution to a fully plastic solution is very
small due to the high thickness of the substrate (100t).



338 F.G. Gaudette et al.

Figure 6. Nominal yielding characteristics of a symmetric tri-layer with elastic-perfectly plastic sandwich layer.
Finite element results validate the analytical expressions.

In summary, nominal yielding for Case A always starts in the tri-layer ahead of the crack
tip at |�Tonset| = |�T A

1−2| (assuming X > 1, ζ > 1, and H > h). Once this temperature is
reached, G is no longer valid. Figure 6 illustrates the three temperature regimes of interface
fracture for the Al2O3/Ni(Cr)/Al2O3 tri-layer with H = h discussed in the sections that follow.
The curve separating the elastic and elasto-plastic solutions is |�T A

1−2| for the tri-layer and the
curve separating the elasto-plastic and fully plastic solutions is the critical temperature where
full plasticity commences in the bi-layer crack wake. The symbols represent finite element
results for η = h/t = 5, 8, 12, 15, and 18.

In the fully plastic regime, the J -integral has an approximate analytical solution when layer
2 is elastic-perfectly plastic, �T is uniform, and there is no contact in the wake of the crack.
Under these conditions, Equation (3.1) can be approximated as in Olsson and Giannakopoulos
(1997), provided that proportional stressing occurs around the crack-tip. For Case A with
H = h, the fully plastic solution corresponds to

JFP = (σo2)
2t

4E2η
3X

(7η2 + 12η + 6) (symmetric tri-layer) . (8.3)

This equation was derived from Equations (4.3), (6.3) and (7.1). For the fully plastic bi-layer
(Olsson and Giannakopoulos, 1997):

JFP = σo2�T (α2 − α1)t − t (σo2)
2

2E2

[
1 + 1

Xη

(
3

η2
+ 6

η
+ 4

)]
(bi-layer) . (8.4)

Note that unlike Equation (8.4), Equation (8.3) is not influenced by temperature change above
�TFP . This ‘plateau’ in the driving force with respect to temperature change means that for
the symmetric tri-layer, the J-integral can reach an absolute maximum.
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Figure 7. The refined finite element mesh used to calculate crack tip fields and assess the J -integral. The smallest
element around the crack-tip was 0.625 µm in length.

9. Finite element results

Equation (3.10) along with conventional elastic stress analysis have provided analytical ex-
pressions for G, Equations (4.2)–(4.6). Combined with analytical expressions for the fully
plastic J -integral, Equations (8.3) and (8.4) give upper bounds for the interface energy release
rate. The region between these bounds, must be described by an elasto-plastic regime. Since
there is no analytical solution for this regime, representative results have been obtained using
finite element analysis.

Two finite element models have been used in this investigation. The first model consisted
of 600, 8-noded plane stress elements arranged in four columns following the lines of Olsson
and Giannakopoulos (1997). This model was used to evaluate the far-field J -integral. The
second model consisted of approximately 4500, 8-noded plane stress elements with an overall
geometry illustrated in Figure 7. The refined mesh in the vicinity of the crack tip for this model
allowed for the evaluation of J along several contours near the crack-tip. The J -integral was
evaluated using the intrinsic contour integral routine in ABAQUS Version 5.7 (ABAQUS,
1997). Periodic boundary conditions were imposed in front of and behind the crack tip such
that beam kinematics hold for the far-field deformation.

9.1. J-INTEGRAL CALCULATIONS IN THE ABSENCE OF CONTACT

This section contains results obtained from the first finite element model that accounts only
for the far-field deformation with the J -integral evaluated along a far-field contour. Contact
is not considered in this section. Material properties used in the model are given in Table 1.
In this case, the thermo-mechanical properties were kept constant with temperature (the finite
element code can allow for temperature dependent properties). If the material properties vary
only moderately over the temperature range of interest, then temperature-averaged properties
could also be used to provide more accurate results (Olsson and Giannakopoulos, 1997).
Similarly, plane strain and generalized plane strain can also be modeled within this code.
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Table 1. Material properties used in the finite element
model.

Material E ν σo α

(GPa) (MPa) (×10−6/◦C)

Al2O3 378 0.25 – 6.2

Ni(Cr) 208 0.31 330 13.3

Figures 10 and 11 contain numerical results for a symmetric Al2O3/Ni(Cr)/Al2O3 tri-layer
(Case A: H = h) subjected to monotonic cooling. The figures truncate at |�T | > 600; after
that creep would relax stresses in the Ni(Cr) layer3. In each figure, J -integral vs. �T is plotted
and the temperature regimes of interface fracture are distinguished.

The results presented in Figures 8a and 8b are for the same tri-layer with two different
values of t , 500 and 250 µm, respectively. When t = 500 µm, cooling in the range 0 <

|�T | < 600 ◦C is not enough to fully yield the bi-layer in the wake of the crack. As a result,
JFP is not reached and therefore only the elastic and elasto-plastic temperature regimes are
present. The deviation from a linear elastic solution occurs at |�T | = 255 ◦C, which is
consistent with the onset of uniform yielding far ahead of the crack tip, Equation (6.3). The
limiting elastic energy release rate at which this occurs is consistent with the predictions of
Equation (7.1). When the thickness of layer 2 is reduced from 500 to 250 µm, both t and
η = h/t = H/t change. The net effect is a reduction in the yielding temperatures and a
reduction in the plateau value of J as given by Equation (8.3). For this geometry, the elastic
solution, J = G, is valid up to |�T | = 247 ◦C. The fully plastic plateau is reached at
|�T | = 427 ◦C with a plateau value equal to 48 J m−2. Thus the finite element model captures
the trends predicted by Equation (8.3).

Comparing the two configurations shown in Figure 8, four important results are appar-
ent. First, the elastic energy release rate significantly overestimates the elasto-plastic J for
|�T | > |�Tonset|. Second, by reducing the thickness of layer 2, the energy release rate reduces
dramatically. This attests for the strong dependence of J on geometry. Third, the interlayer
yield strength, σ02, plays an important role in determining J through both the scaling of the
temperature bounds and the magnitude of JFP . Fourth, the temperature regimes depicted in
Figure 6, based on far-field nominal yielding, also capture the transition temperatures observed
for the changes in the J -integral.

Figures 10a and 10b have shown results for the case when layer 2 is elastic-perfectly
plastic. If layer 2 is capable of strain hardening, the plateau in J is not reached. Figure 9a
shows how J changes as a result of moderate linear strain hardening defined by a tangent
modulus (HT ) equal to 1%, 5%, and 20% of the elastic modulus E2. The small change in J

for HT = 0.01E2 and 0.05E2 suggests the elastic-perfectly plastic solution can still modestly
predict the response of materials which exhibit low strain hardening, e.g., pure annealed FCC
metals.

Figure 9b shows the evolution of J with temperature for an Al2O3/Ni(Cr) bi-layer obtained
by setting H = 0. The shaded region in the bottom of the figure marks the area which
completely bounds the solution for a tri-layer that can be formed if an additional 1000 µm

3Creep is important for temperatures higher than the homologous temperature, 0.5. For Ni(Cr)TM = 1390 ◦C.
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Figure 8. J vs. Temperature curves for an Al2O3/Ni(Cr)/Al2O3 tri-layer: (a) with t = 500 µm and (b) with
t = 250 µm. H = h = 1000 µm in both subfigures.

layer of Al2O3 is applied to the Ni(Cr). Note that the bi-layer and the tri-layer in Figure 9b
have the same |�TFP |. A comparison of Figures 10b and 11b shows the two central differ-
ences between these solutions. First, the driving force, J , for interface fracture is higher in
the bi-layer than it is for the equivalent symmetric tri-layer. Second, the difference between
the elastic, G, and elastic-plastic, J , is much more pronounced for the tri-layer. The latter
indicates the advantage of having plasticity develop and spread both in the wake and ahead of
the crack tip.

Finite element results representative of Case B are shown in Figure 10. In this example
layers 1 and 2 have the elastic properties of Ni(Cr) and layer 3 has the properties of Al2O3.
The interlayer (layer 2) has been given a very small yield strength, σo2 = 20 MPa, in order
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Figure 9. (a) The influence of strain hardening on J (�T ) and (b) J (�T ) for a bi-layer with no strain hardening.

to accentuate results in the fully plastic regime. Since layers 1 and 3 remain elastic, plastic
deformation remains confined within layer 2.

Equations (4.4), (8.4) and (8.3) show that the energy release rate under thermal loading
has either second, first, or zeroth-order dependence on �T : G ∝ �T 2, JFP ∝ �T for the
bi-layer and JFP ∝ �T 0 for the tri-layer.

9.2. PATH-DEPENDENCE OF THE J-INTEGRAL AND ALTERNATE STRESS STATES

The analytical derivations and finite element results up to this point are valid for plane stress.
This section considers alternate stress states and their influence to the path dependency of
the J -integral in the elasto-plastic and fully plastic regimes. In order to do this, the second
finite element model, having a refined mesh in the vicinity of the crack, was used. As a means
of comparing near-tip and far-field values, the J -integral was evaluated along fifty concentric
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Figure 10. J vs. Temperature curves for Case B using properties of Ni(Cr) and Al2O3.

circles having origins centered at the crack tip and radii ranging from y/t = 0.0025 to y/t = 1
(Figure 1). For plane stress, results from the latter were in exact agreement with those obtained
along the far-field contour discussed in Section 9.1.

In order to limit the scope only representative solutions for the Al2O3/Ni(Cr)/Al2O3 tri-
layer (Case A) with t = 250 µm and H = h = 1000 µm are discussed. Figure 11 contains
plots of the J -integral vs. �T evaluated along a far-field path (y/t = 1) and near-tip path
(y/t = 0.0025). Results for plane stress, plane strain and generalized plane strain are pre-
sented. In each case, a small amount of strain hardening, defined by a linear tangent modulus,
HT , was added to facilitate numerical convergence. JFP based on plane stress has been plotted
in each figure for comparison. When modeling the generalized plane strain state, the un-
cracked ligament w was varied from 4 to 8 times the crack length, a, in order to determine the
dependence of J on model length4 . This procedure indicated that beyond w = 5a there was
negligible effect of w on J . The presented results are for w = 5a.

Figures 13a and 13b illustrate two points. First, when y/t = 1, the generalized plane strain
and plane stress solutions have similar values, both being approximately equal to JFP in the
fully yielded regime. The plane strain solution lies significantly below these two because the
additional out-of-plane constraint reduces |�T | for both yield initiation and full plasticity.
Second, the near-tip J (y/t = 0.0025) for all stress states deviates from the far-field J .

The plane strain state, though modeled here, is not appropriate for the present thermal
problem since it over-constrains the tri-layer (Gaudette et al., 1997). Thus the deviation from
JFP for this stress state is not a significant source for concern.

Figure 12 contains plots of the stress fields ahead of the crack tip for the generalized plane
strain and plane stress states for the Al2O3/Ni(Cr) tri-layer with t = 250 µm and H = h =
1000 µm. The evolution of these fields, particularly σyz and σzz, in plane stress and generalized
plane strain respectively, for |�T | > |�T bi−A

FP | = 427 ◦C, suggests that the single parameter
characterization of cracking along the interface is breaking down. The normalization used
for both the ordinate and abscissa in Figures 12a and 12b is such that the normalized stress

4The overall model length (a + w) must resemble an edge crack in a semi-infinite slab. For generalized plane
strain the length w influences the out-of-plane constraint for y < 0.
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Figure 11. The (a) far-field (y/t = 1) and (b) near-tip (y/t = 0.0025) J for plane stress, plane strain and
generalized plane strain (t = 250 µm, H = h = 1000 µm).

fields would have been invariant with temperature, if a single parameter characterization of
the crack-tip existed. Additional parameters to the J -integral may be the hydrostatic stress
state or the T -stress at the crack-tip (O’Dowd and Shih, 1991). For generalized plane strain
the stress fields ahead of the crack tip can be approximated as

σyz ≈ KII/
√
Jtip/σ02√

2πy/(Jtip/σ02)
, 2 ≤ y

Jtip/σ02
≤ 5 ,

σzz ≈ KI/
√
Jtip/σ02√

2πy/(Jtip/σ02)
+ Q, 2 ≤ y

Jtip/σ02
≤ 3,

(9.1)

where, for the tri-layer, Q is approximated by

Q ≈ 2
(α2 − α1)�T t

2h/E2 + t/E1
. (9.2)

For the example in Figure 12b, K2
II /Jtip = 16.6 GPa.

Furthermore, Figure 12c suggests that this stress-state may influence the fracture charac-
teristics of these interfaces through the phase between normal and tangential loading, 9 =
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Figure 12. Near-tip stress fields (t = 250 µm, H = h = 1000 µm): opening and shear mode stress for (a) plane
stress and (b) generalized plane strain and (c) loading phase, 9 = tan−1(σyz/σzz)

tan−1(σyz/σzz). This figure demonstrates that 9 for generalized plane strain is significantly
lower than it is for plane stress. However 9 varies mildly with position for the generalized
plane strain, in comparison with the plane stress case.

The findings shown in Figures 12a–c are typical of the large-scale yielding conditions
that develop in the fully plastic regime. One consequence is that J may be more configura-
tion dependent (and deviate from the estimate given in Equation (8.3)) as plasticity propa-
gates through the layers (Anderson, 1991). Likewise, a failure or growth criterion may also
have to take into account this dependency (McClintock et al., 1995). Despite these find-
ings, it is believed that JFP still remains a better approximation than G. For the case of
the Al2O3/Ni(Cr)/Al2O3 tri-layer with t = 250 µm G = 177, 334, and 371 J m−2 for plane
stress, generalized plane strain and plane strain, respectively. The latter value, though obtained
from the finite element model, could be calculated by substituting Ei → Ei/(1 − v2

i ) and
αi → αi/(1 + vi) into Equation (4.4), as suggested in (Suresh et al., 1994). Furthermore,
the analytical solution JFP provides a convenient and quick starting place for more detailed
analysis.
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The preceding analysis assumed that the crack is stationary and remains at the interface.
Though interface crack growth is not addressed in this paper it is important to note that a
crack initiating at an interface may not necessarily propagate along the interface. The pre-
ferred growth direction depends on the ratio of the interface toughness to the toughness of
the adjoining layer as well as their stiffness ratio, as noted in (He and Hutchinson, 1989;
Simonov, 1992). For the Al2O3/NiCr example given above the interface crack will tend to
propagate along the interface because the interface toughness is less than ∼0.5 the toughness
of the Ni(Cr). For values greater than this the interface crack will kink into the Ni(CR) and
blunt. Further details can be found in (Gaudette, 1999).

9.3. INTERFACIAL CONTACT

The contact model presented in Section 5 predicts that large scale contact in the wake of the
interface crack reduces the driving force for interface fracture. In this section results from
finite element simulations that include contact are presented. The finite element model used
the refined mesh (Figure 7) with frictionless contact elements added along the whole interface
between layer 3 and 2 over the entire length (−a < y < 0). Figures 13a and 13b contain
results for a Ni(Cr)/Al2O3 tri-layer with t = 250 and H = h = 1000 µm under conditions
of plane stress. In Figure 13a, elastic conditions are assumed for direct comparison with the
results from the contact model shown in Figure 3. Plotted in Figure 13a are the finite element
solutions with and without contact constraint, as well as the analytical solution predicted by
Equation (5.8). Figure 13b contains elastic-plastic results for the Ni(Cr) tri-layer with HT =
0.01E2.

Under elastic conditions the finite element model predicts a contact shielding effect of
∼26%. This value agrees quite well with the value 22% predicted from Equation (5.8). Ad-
ditional model results further confirm two other theoretical results: (i) the shielding affect as
a percent of G is nearly constant and (ii) a single point is in contact in the crack wake. The
localization of contact in the vicinity of y = −a is consistent with the single point result used
in the analytical contact model. Further, the finite element analysis did not reveal any local
crack closure at the crack-tip, as plasticity resulted in significant crack-tip blunting.

During cooling, yielding in the Ni(Cr) causes J to deviate from G. With contact, the
deviation is further enhanced as additional strain energy builds up in the crack wake. These
trends are demonstrated in Figure 13b. The ‘predicted J ’ shown in the figure was obtained by
extending the elastic analysis correction obtained from Equation (5.8) to JFP , obtained from
Equation (8.3). Such extension gives an approximate analytical expression for the far-field J

in the presence of contact.

10. Discussion of results

The present work has examined the evolution of the energy release rate, the J -integral, for
a stationary crack in a three-layered metal–ceramic system subject to monotonic thermal
loading. For a plane stress state with incremental thermo-elasto-plasticity, analytical expres-
sions for the deformation and the energy release rate were derived. In addition, finite element
calculations confirming the analytical expressions were carried out.

The overall behavior of the composite was found to depend on characteristic temperatures
which mark the bounds between the three regimes of interface fracture; elastic, elasto-plastic,
and fully plastic. For interfaces that debond at a critical value of J , the results of this paper
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Figure 13. Finite element simulations of large-scale interfacial contact in the wake of an interface crack
(t = 250 µm, H = h = 1000 µm): (a) elastic conditions for comparison with the contact model and (b)
elastic-plastic conditions for the Ni(Cr) tri-layer.

may be used to define the characteristic temperature at which growth of an edge-crack may
initiate.

This work has been concerned with three layered material systems. In some instances
assumptions regarding the material behavior of the layers have been made for purposes of
simplification. In spite of this, the adopted solution procedure is general in the sense that
it can be applied to many layered material systems with each layer having unique thermal,
elastic and plastic properties. Besides thermal strains, other eigenstrains such as sintering and
moisture swelling can be dealt with in a similar way.

The most important features identified in this work relate to the interacting roles of plas-
ticity, geometry, and large-scale contact. It has been shown that each of these features plays a
role in determining J . If a layered material can be designed with low characteristic tempera-
tures, |�Tonset| and |�TFP |, it can benefit substantially from the shielding effects of plasticity.
Furthermore, if a layered system also utilizes an optimized geometry, additional benefits can
be realized. Case A with H = h is an example. By reducing the thickness of layer 2, both
|�Tonset| and |�TFP | are reduced. At the same time, by making the geometry symmetric, the
additional benefit of a limit J was obtained.

The development of plasticity across the entire interface and ahead of the interface crack-
tip, for |�T | > |�Tonset|, leads to large-scale plasticity effects in fracture. This branch of
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fracture mechanics is notorious for the scarcity of analytical results, as well as the break-
down of the path-independence of line integrals used to characterize non-linear elastic fracture
(Olsson and Giannakopoulos, 1997). If the energy release rate, J , were to be used against
interface fracture initiation in thermally loaded layered materials, the following points have to
be considered:

(i) The crack driving force, as given by the J -integral, does not depend on crack length
provided that the crack is longer than the largest layer thickness.

(ii) The J -integral can be approximated by a far-field line integral in the elastic and elasto-
plastic regime.

(iii) The J -integral can take into account the effects of large-scale contact in the elastic
regime. An elastic contact model provides a closed-form solution which predicts how contact
reduces the energy release rate.

(iv) The J -integral is strongly dependent on material properties, layer thickness, and con-
figuration.

(v) The J -integral has to be supplemented with some measure of the mode mixity and the
hydrostatic stress state close to the crack-tip.
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