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Abstract

The present work investigates the impact of a sharp indenter at low impact velocities. A one-dimensional model is

developed by assuming that the variation of indentation load as a function of depth under dynamic conditions has the

same parabolic form (Kick’s Law) as under static conditions. The motion of the indenter as it indents and rebounds

from the target is described. Predictions are made of the peak indentation depth, residual indentation depth, contact

time, and rebound velocity as functions of the impact velocity, indenter mass and target properties. Finite element

simulations were carried out to assess the validity of the model for elastoplastic materials. For rate-independent ma-

terials agreement with the model was good provided the impact velocity did not exceed certain critical values. For rate-

dependent materials the relationship between load and depth in the impact problem is no longer parabolic and the

model predictions cannot be applied to this case. The rate-dependent case can be solved by incorporating the rela-

tionship between the motion of the indenter and the dynamic flow properties of the material into the equation of motion

for the indenter. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We consider here the impact of a sharp indenter. Indentation problems are difficult to analyze: the
problem is generally three-dimensional, a complicated contact problem must be solved at the interface of
the indenter and the target, and material nonlinearities due to plasticity, friction, phase transformations
and microcracking are often involved. For the case of an impact problem, target inertia and rate-dependent
material behavior add to the complexity of the problem. The impact of a sharp indenter is a problem of
considerable technological interest, both as a means of assessing dynamic material behavior and for
evaluating the damage caused by the impact of small, sharp particles on various types of structures. Impacts
of this kind on aircraft bodies and engine components, termed foreign object damage (FOD), is a significant
concern to airframe and aircraft engine manufacturers.
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Indentation tests provide a nondestructive method for extracting several basic material properties, at
various size scales. Nearly all standard instrumented indentation tests are carried out under quasi-static
conditions. Results have been reported for dynamic indentation tests using sharp (Graham, 1973; Marshall
et al., 1983; Koeppel and Subhash, 1999) and spherical indenters (Tirupataiah and Sundararajan, 1991). A
dynamic indentation test offers the possibility of determining the dynamic hardness and rate-dependent
response of the material.

In this paper, we analyze the impact of a sharp indenter in the context of dynamic elastoplasticity. In
Sections 2 and 3 we analyze theoretically and computationally the case of rate-independent response of the
target. In Section 4, we analyze computationally the case of rate-dependent response of the target and
provide a general methodology to relate the impact response with the rate-dependent plastic properties of
the target.

2. Analytical one-dimensional model

The indenter is assumed to be sharp, such as a pyramid or circular cone indenter. The indenter is as-
sumed to be rigid. It has a mass m and contacts the target at an initial velocity V0 normal to the surface. The
target is assumed to be a rate-independent, elastoplastic, homogeneous, isotropic body whose dimensions
are large compared to the contact diameter. The contact is assumed to be frictionless. Prior to the impact,
the target is stress-free and at rest.

For sharp indentation under quasi-static conditions, if P is the force exerted by the indenter on the target
and h is the depth of indentation, the P–h curve follows a parabolic relation during loading, i.e. P ¼ Ch2,
known as Kick’s law. The unloading curve is assumed to be linear. The slope of the unloading curve reflects
the elastic properties of the indenter and the target, as well as the area of contact at the instant of unloading.
Note that as the load approaches zero, typically the unloading curve becomes nonlinear. However, a linear
unloading curve is employed in this analysis. We define a new constant Ce in terms of the unloading slope
dP=dh and the peak indentation depth hmax as dP=dh ¼ Cehmax. The constant Ce has the same units as C. By
asserting that the contact area corresponding to elastic response at the maximum load should be less than
or equal to the actual contact area it can be shown that the slope of the unloading curve must be greater
than or equal to the instantaneous slope of the loading curve at the point of unloading. This requires that
C=Ce must be less than or equal to 0.5. Fig. 1 shows the loading and unloading curves for various allowable

Fig. 1. Force–depth curves showing allowable values of the unloading slope.
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values of the dimensionless parameter C=Ce. Expressions for C and the unloading slope for various sharp
indenter geometries under static conditions are available (e.g. Giannakopoulos and Suresh, 1999).

During the impact, the motion hðtÞ of the indenter is governed by Newton’s second law:

m€hhþ P ¼ 0: ð1Þ
The velocity and acceleration of the indenter will be denoted by _hh and €hh, respectively. Time t ¼ 0 is taken to
be the instant when the indenter touches the target. The motion of the indenter has three phases: an in-
dentation phase, a rebound phase and a free-flight phase. During the indentation phase, the velocity of the
indenter decreases as the initial kinetic energy is converted to energy associated with deformation of the
target. Part of the initial energy is stored as elastic energy which is recovered in the rebound phase, while
the rest is dissipated as plastic work.

To analyze the impact problem it is assumed that the shape of the P–h curve is unchanged under dy-
namic conditions. If the impact velocity is high enough the kinetic energy of the target becomes significant.
Furthermore, adiabatic heating and thermal softening, localization of the deformation, phase transfor-
mations or even melting of the material can occur under dynamic conditions. Under these conditions, the
dynamic P–h curve will not follow the quasi-static curve and this analysis will not be valid. Assuming that
the quasi-static curve is followed during the indentation phase P increases with h as P ¼ Ch2 so we have that

m€hhþ Ch2 ¼ 0; tP 0 ð2Þ
with initial conditions h ¼ 0 and _hh ¼ V0 at t ¼ 0. Integration of Eq. (2) leads to the energy balance ex-
pression:

1
2
m _hh2 � 1

2
mV 2

0 ¼ �1
3
Ch3: ð3Þ

The maximum penetration depth hmax can be determined from Eq. (3) by setting _hh ¼ 0 and solving for h:

hmax ¼
3mV 2

0

2C

� �1=3

: ð4Þ

Eq. (3) can be integrated with respect to time to obtain the duration of the penetration phase t1, i.e. the
time taken to reach hmax:

t1 ¼
Z hmax

0

V 2
0

�
� 2

3

Ch3

m

��1=2

dh ¼ 3m
2CV0

� �1=3
1

3
b

1

3
;
1

2

� �� �
¼ 1:402

3m
2CV0

� �1=3

; ð5Þ

where b is the beta function (Euler’s integral of the first kind) defined as

bðx; yÞ ¼
Z 1

0

tx�1ð1� tÞy�1
dt: ð6Þ

More generally, if tðhÞ is the time taken by the indenter to penetrate to a depth h of the target, a similar
calculation gives:

t hð Þ ¼
Z h

0

V 2
0

�
� 2

3

Cu3

m

��1=2

du ¼ 3m
2CV0

� �1=3 Z h=hmax

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x3

p : ð7Þ

During the rebound phase, the load follows the linear unloading curve shown in Fig. 1. During un-
loading the load may be expressed as P ¼ Cehmaxhþ ðC � CeÞh2max. This expression comes from the defi-
nition of the unloading slope, and using the condition that the load P is equal to Ch2max at h ¼ hmax. The
motion of the indenter is governed by

m€hhþ Cehmaxhþ Cð � CeÞh2max ¼ 0; tP t1 ð8Þ
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with initial conditions h ¼ hmax and _hh ¼ 0 at t ¼ t1. The solution of this differential equation is

h tð Þ ¼ hmaxð1� �CC þ �CC cosðxt � xt1ÞÞ; ð9Þ
where x ¼ ðCehmax=mÞ1=2 and �CC ¼ C=Ce. The indenter accelerates away from the target until the force P
decreases to 0. From the expression for the unloading curve the depth h2 when P ¼ 0 can be found to be

h2 ¼ hmaxð1� �CCÞ: ð10Þ
The depth h2 represents the final or residual indentation depth; the difference between hmax and h2

corresponds to the elastic recovery of the target. By setting hðtÞ ¼ h2 in Eq. (9) the time t2 when P ¼ 0 can
be found to be

t2 ¼ t1 þ
p
2

m
Cehmax

� �1=2

: ð11Þ

During the final (free-flight) phase the indenter and the target are no longer in contact. No forces act on
the indenter; it moves away from the target at constant velocity. In this phase the velocity, _hh, is equal to its
value at t ¼ t2. This rebound velocity can be determined by differentiation of Eq. (9) and setting t ¼ t2:

Vrebound ¼ �V0
3 �CC
2

 !1=2

: ð12Þ

The position during the free-flight phase is given as

h tð Þ ¼ h2 � tð � t2Þ
3 �CCV 2

0

2

 !1=2

: ð13Þ

The absolute value of the ratio of the rebound velocity to the impact velocity, the coefficient of resti-
tution e, is evaluated using Eq. (12) to be

e ¼ Vrebound
V0

				
				 ¼ 3 �CC

2

 !1=2

: ð14Þ

The coefficient of restitution is independent of the impact velocity. In terms of a normalized time �tt ¼ t=t1
and a normalized indentation depth �hh ¼ h=hmax, the motion of the indenter may be written as

�ttð�hhÞ ¼ 0:713

Z �hh

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x3

p ¼ 0:713 �hhF ð1=3; 1=2; 4=3; �hh3Þ; 06 t6 t1 ð15Þ

�hhð�ttÞ ¼ �CC cos
�tt � 1

0:582 �CC1=2

 ! 
� 1

!
þ 1; t1 < t6 t2 ð16Þ

�hhð�ttÞ ¼ �hh2 � ð�tt � �tt2Þð2:948 �CCÞ1=2; t > t2: ð17Þ
In the above expressions, F is the hypergeometric function, �hh2 ¼ 1� �CC, and �tt2 ¼ 1þ 0:915ð �CCÞ1=2. The

complete motion of the indenter is shown in Fig. 2 which plots the function �hhð�ttÞ for various values of the
dimensionless ratio C=Ce. Marshall et al. (1983) considered the impact of a sharp indenter and provided
expressions for the peak depth hmax and loading time t1 analogous to Eqs. (4) and (5). The present study
extends their analysis by considering the rebound phase, and providing expressions for the complete motion
of the indenter. The rebound phase can be important if elastic deformation of the target is significant (e.g.
brittle materials).
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3. Finite element simulations for rate-independent materials

In this section the results of a finite element study are presented. The objective is to assess the range of
validity of the analytical results presented in Section 2. The commercial finite element package ABAQUS/
Explicit (HKS, Pawtucket, RI) was used to simulate the impact. The mesh used is shown in Fig. 3(a). A
typical deformed mesh at the peak depth of indentation is shown in Fig. 3(b). The simulation uses infinite
elements away from the contact area to simulate a semi-infinite region. The mesh has a total of 19,200
axisymmetric, 4-noded, reduced integration, continuum elements, and 160 infinite elements at the bound-
ary. Although the analytical results in Section 2 apply for any sharp indenter, in these simulations the
indenter is considered to be a cone with a 70.3� included half angle. This gives approximately the same ratio
of indentation depth to contact area as the common Vickers and Berkovich indenters. At the peak depth of
indentation approximately 14–18 elements spanned the contact radius. Large deformation analysis and the
adaptive meshing option were employed. The indenter was represented as a rigid surface with an associated
mass element. To study the role of indenter mass two different values were used: m ¼ 10 mg and 10 g. The
impact velocity V0 varied from 0.5 to 1800 m/s. The simulations were isothermal; heating of the material and
the associated thermal softening were not included.

To consider a variety of materials, the stress–strain response of the target was represented by four
different elastoplastic materials: 6061 Aluminum (Giannakopoulos et al., 1994), annealed commercial brass
(ASM, 1979), mild steel and 4340 steel (ASM, 1987). Classical Mises elastoplastic behavior was assumed,
i.e. isotropic linear hypoelasticity and incremental plastic strains calculated using an associated Mises flow
rule. Fig. 4 shows the uniaxial tensile true stress–logarithmic plastic strain curves for these materials. These
curves are from quasi-static tests. In some cases the uniaxial data did not extend out to the large strains
necessary to carry out the indentation simulations; in these cases the data were extended assuming constant
strain hardening. Values of C and Ce for each material were determined from quasi-static simulations and
are reported in Table 1.

In order to compare the finite element analysis (FEA) results with the analytical results, we will first
compare with the predicted maximum indentation depth hmax. The expression for hmax in Eq. (4) can be
rewritten as follows:

hmax ¼ ht
V0
Vt

� �2=3

: ð18Þ

Fig. 2. Analytical prediction of normalized indentation depth vs. normalized time for various values of C=Ce.
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Fig. 4. True stress–logarithmic plastic strain curves for the materials considered in the finite element simulations.

Fig. 3. (a) Finite element mesh used for dynamic indentation simulations. (b) Typical deformed mesh at peak indentation depth.
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The quantities ht and Vt are defined as

ht ¼
3m

2qtarget

 !1=3

; ð19Þ

Vt ¼
C

qtarget

 !1=2

; ð20Þ

where qtarget is the mass density of the target material. The velocity Vt is a characteristic velocity for the
dynamic sharp indentation problem. As V0 approaches Vt the kinetic energy absorbed by the target becomes
significant and results in discrepancies between the simulations and the analytical results. The values of Vt
are reported in Table 1. The peak depth (FEA results) as a function of impact velocity is shown in Fig. 5.
Eq. (18) suggests that if the normalized depth hmax=ht, is plotted versus the normalized impact velocity
V0=Vt, the results for the different materials and indenter kinetic energies should fall on the same curve. Fig.
6 shows this plot. It can be seen that up to a velocity of approximately 0:1Vt good agreement holds between
the theory and the FEA results, above that velocity the depths seen in the simulations are less than those
predicted by the theory.

An additional way to assess the range of validity of the analysis is to examine the coefficient of restitution
e. Recall from Eq. (14) that e should be independent of the impact velocity and depends only on the ratio
C=Ce. Fig. 7 shows e (FEA results) plotted as a function of impact velocity. Fig. 8 plots the normalized
coefficient of restitution (FEA result divided by theoretical prediction) vs. the normalized impact velocity
ðV0=VtÞ. It can be seen that for all four materials the FEA results deviate from the analytical prediction

Table 1

Indentation characteristics of the different alloys considered in this study

Al 6061 Mild steel 4340 steel Brass

C (GPa) 30.07 28.32 139.20 12.50

Ce (GPa) 516.4 1564.4 1334.6 701.7

C=Ce 0.059 0.018 0.104 0.018

qtarget (g/cm
3) 2.7 7.9 7.9 8.5

Vt (m/s) 3337 1905 4224 1220

Fig. 5. Peak depth vs. impact velocity (FEA results).
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Fig. 8. Normalized coefficient of restitution vs. normalized impact velocity.

Fig. 6. Normalized peak depth vs. normalized impact velocity, along with the analytical result, Eq. (4).

Fig. 7. Coefficient of restitution vs. impact velocity (FEA results). The analytical result, Eq. (14), is also shown.
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when the impact velocity exceeds approximately 0:01Vt. Below this velocity, the coefficient of restitution is
approximately constant and in reasonable agreement with the theory.

As a final means of assessing the range of validity of the analysis, we compare the contact time in the
finite element simulations with the theoretical prediction, Eq. (11). The contact time t2 can be expressed as

t2 ¼ tt
V0
Vt

� ��1=3

; ð21Þ

where we have introduced the quantity tt defined as

tt ¼
m2qtarget

C3

� �1=6

½1:605þ 1:468ð �CCÞ1=2�: ð22Þ

Fig. 9 shows the contact time t2 (FEA results) plotted as a function of impact velocity. Eq. (21) suggests
that if a normalized contact time, defined as t2=tt, is plotted versus the normalized impact velocity, V0=Vt, the
results for the different materials and indenter kinetic energies should fall on the same curve. Fig. 10 plots

Fig. 9. Contact time vs. impact velocity (FEA results).

Fig. 10. Normalized contact time vs. normalized impact velocity, along with the analytical result, Eq. (11).
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these results; it can be seen that good agreement is obtained up to impact velocities of 	 0.1Vt, above that
value the contact time observed in the simulations does not continue to decrease as predicted by the theory
and instead begins to increase slightly with increasing impact velocity.

The finite element simulations demonstrate the existence of a characteristic velocity Vt which defines the
range of validity of the analytical results. As the impact velocity approaches the Vt the role of target inertia,
neglected in the analytical model, becomes significant and results in discrepancies between the analytical
model and the FEA results seen in Figs. 6, 8 and 10. Comparing the analytical results with the finite element
simulations, it appears that quantities associated with the loading phase (e.g. peak depth) show good
agreement with the analytical results at impact velocities up to 	 0.1Vt, while quantities associated with the
rebound phase (e.g. rebound velocity) show good agreement up to lower velocities, 	 0.01Vt. The contact
time has a contribution from both the loading phase and the rebound phase. The contribution from the
loading phase is significantly larger than that from the rebound phase, hence the contact time shows good
agreement with the analytical results at impact velocities up to 	 0.1Vt.

4. Rate-dependent material response

The simulations in the previous section assumed rate-independent material behavior. In this section we
consider the influence of rate-dependent plasticity on the impact of a sharp indenter. It is well known that for
some materials the yield stress can vary with the imposed strain rate (e.g. Clifton, 2000; Frantz and Duffy,
1972; Huang and Clifton, 1985; Klopp, 1984; Lee et al., 2000; Li, 1982; Nicholas, 1980; Senseny et al., 1978).
Fig. 11 shows the variation in yield stress with strain rate for a variety of metals, showing the increase in flow
stress with strain rate. Some of this data is for dynamic shear tests, and the shear quantities have been
converted to equivalent uniaxial values. Fig. 12 shows this same data plotted with the dynamic yield stress
normalized by the quasi-static yield stress. One way to include the strain rate effect is the power law form

ryð�; _��Þ ¼ r0
yð�Þ 1

0
@ þ _��

_��0

 !b
1
A; ð23Þ

where b and _��0 are material constants. To assess the role of rate-dependent material behavior on the impact
of a sharp indenter, finite element simulations using ABAQUS/Explicit were carried out in which the yield

Fig. 11. Yield stress vs. strain rate for a variety of metals showing the increase in yield stress with strain rate.
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stress varied with strain rate. The mesh used in these simulations was the same as that described in Section
3. A strongly rate sensitive material (with properties corresponding to 1100-O aluminum) and a weakly rate
sensitive material (with properties corresponding to 6061 aluminum) were simulated. Values of b ¼ 1=3,
_��0 ¼ 8000 s�1 and b ¼ 1=3, _��0 ¼ 250,000 s�1 were used for the strongly rate sensitive and weakly rate
sensitive materials, respectively. The cases b ¼ 1=2 and _��0 ¼ 8000 s�1 and b ¼ 1=6 and _��0 ¼ 250,000 s�1 were
also examined. For these materials the variation in flow stress with strain rate is shown in Fig. 12. Material
data was defined in such a way that the strain hardening was not rate sensitive.

The effect of rate-dependent material response in dynamic indentation is to increase the resistance to
indentation. This effect is illustrated in Fig. 13 which shows the dynamic P–h curve for a simulation in
which the rate-dependent response was included for the case of 1100 Aluminum. The indenter mass and
impact velocity are 10 mg and 3 m/s, respectively. Even at this low impact velocity, the inclusion of rate-
dependent plasticity has the effect of decreasing the peak depth compared to the rate-independent case. The
reduction in peak depth, and thus in the final indent size, demonstrates how elevated hardness values are
observed under dynamic conditions.

Fig. 13. Load vs. depth in dynamic indentation simulations, rate-dependendent and rate-independent, for 1100Al,m ¼ 10mg, V0 ¼ 3m/s.

Fig. 12. Yield stress ratio vs. strain rate for the experimental data shown in Fig. 12.
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To assess the validity of Kick’s law for the rate-dependent case we attempted to fit curves of the form
P ¼ Ch2 to the loading portion of the load–depth curves. A typical result shown in Fig. 13 shows a poor fit.
In fact, at the final stages of the loading curve the load becomes constant and then actually decreases
slightly. For rate-dependent materials Kick’s law is not valid for the impact problem, and therefore the
analytical results derived in Section 2 cannot be applied.

Kick’s Law is not valid for the rate-dependent case as the loading rates, and thus the material strength,
vary during the impact. When the material response is rate-sensitive, C is not constant and instead varies
with the loading rate. The strain rates in the material scale with the rate quantity _hh=h (e.g. Lucas and Oliver,
1999; Woodcock and Bahr, 2000) and thus C depends on material properties and _hh=h. For a flow stress
variation that follows Eq. (23), C can be approximated as

C ¼ C0f ð _hh=hÞ; ð24Þ
where C0 is the quasi-static value of C, i.e. the value of C as _hh=h ! 0. Therefore the function f ð _hh=hÞ is
positive with f ð0Þ ¼ 1. This suggests that if the motion of the indenter hðtÞ were such that _hh=h were held
constant, rate-dependent materials will follow Kick’s law, with the constant C elevated above its quasi-
static value.

We now apply these results to analyze the impact problem. In the following we will suppress the ar-
gument _hh=h and denote the function f ð _hh=hÞ simply as f. During impact the velocity will decrease as the
indenter advances into the material. The rate quantity _hh=h is not constant; it will decrease as indentation
proceeds, eventually becoming equal to 0. During the loading phase the governing equation for the motion
of the indenter is

m€hhþ Ch2 ¼ m€hhþ C0fh2 ¼ 0; tP 0 ð25Þ
with initial conditions h ¼ 0 and _hh ¼ V0 at t ¼ 0. If the values of m and V0 are provided, and C0 and f are
known, Eq. (25) can be solved numerically to find the motion hðtÞ. As was done for the rate-independent
case, Eq. (25) can be integrated to yield the instantaneous energy balance equation

1

2
m _hh2 þ 1

3
C0fh3 �

C0

3

Z t

0

ðh2€hh� h _hh2Þf 0 dt ¼ 1

2
mV 2

0 ; ð26Þ

where f 0 represents the derivative of f with respect to its argument _hh=h. Using the condition that at the peak
indentation depth, h ¼ hmax, the velocity _hh ¼ 0 and f ð0Þ ¼ 1, the peak indentation depth can be determined
to be:

h3max ¼
3

2

mV 2
0

C0

�
Z t1

0

ðh _hh2 � h2€hhÞf 0 dt; ð27Þ

where t1 is the time at which the peak depth is reached and _hh ¼ 0. Comparing with the rate-independent
result, Eq. (4), it can be seen that for the rate-dependent case the peak depth is reduced.

To assess this analysis, finite element simulations were carried out in which the motion hðtÞ was such that
_hh=h was a constant whose value was varied over the range 2500–500,000 s�1. The motion was of the form
hðtÞ ¼ h0 expðrtÞ where r is the value of _hh=h. As the exponential curve does not satisfy hð0Þ ¼ 0, a short
period of constant velocity motion is imposed to connect the zero point with the exponential curve. The
constant velocity takes place over a depth less than 2% of the total depth, so the influence of this region is
expected to be small. Fig. 14(a) shows the form of the motion imposed for the case r ¼ 5000 s�1, while Fig.
14(b) shows a detail of the initial stages of the motion and the constant velocity segment that connects to
the exponential curve.

Fig. 15 shows the load vs. depth curves for 1100 Al at various values of the rate parameter _hh=h, along
with the quasi-static result. It can be seen that in all cases the P–h curve is well represented by Kick’s law,
and from these results the constant C may be determined for each case. Good agreement with Kick’s law
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was also found for 6061 Al. The variation of C as a function of _hh=h for the two different materials is plotted
in Fig. 16. As expected, the strongly rate sensitive material shows greater sensitivity to the rate parameter
_hh=h. These results allow one to assess the form of f ð _hh=hÞ.

For the case where the strain rate influences the flow stress according to Eq. (23), we fit the variation of C
as a function of _hh=h using the following function which involves two unknown parameters c and r0

f ð _hh=hÞ 	 1

"
þ

_hh=h
r0

 !c#
: ð28Þ

Within the range of parameters examined, we found that c 	 b and r0 	 40 _��0c. Using the expression in Eq.
(28) for f ð _hh=hÞ the integral in Eq. (27) converges and was evaluated numerically for a range of impact
velocities and masses using the values of hðtÞ, _hhðtÞ and €hhðtÞ obtained from FEA. The peak depth was

Fig. 14. (a) Applied hðtÞ for rate-dependent indentation simulations. (b) Applied hðtÞ showing constant velocity region.

Fig. 15. Load vs. depth in dynamic indentation simulations at constant indentation loading rate _hh=h for 1100 Al, along with the quasi-

static result.
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predicted to within 5% in all cases examined, which implies that Eq. (24) is a valid representation of the
variation of C under impact conditions. For the case of dynamic spherical indentation, Tirupataiah and
Sundararajan (1991) define an average strain rate in the plastically deforming region, using expressions for
the average strain and the contact time of the indenter. Koeppel and Subhash (1999) have suggested an
average or effective strain rate equal to the velocity of the indenter divided by the final size of the inden-
tation. The results presented here suggest an alternative approach in which the average variation in strain
rate is followed during the impact through the function f ð _hh=hÞ. The present formulation suggests a way to
obtain the dynamic material constants b and _��0. The least information is either the displacement or velocity
history for at least three dynamic indentation tests at different indenter kinetic energies mV 2

0 =2. Equally
well, one can use at least two dynamic indentation tests at different kinetic energies and one static test which
provides C0 directly.

5. Conclusions

An analysis of the impact of a sharp indenter has been presented. A solution describing the motion of the
indenter has been given. The maximum depth of indentation, the residual depth of indentation, the time the
indenter is in contact with the target and the rebound velocity have been provided.

The analytical results have been compared with dynamic rate-independent elastoplastic finite element
simulations. The peak indentation depth, contact time and rebound velocity from the simulations were
compared with the analytical predictions. The quantity ðC=qtargetÞ

1=2
was found to be a characteristic ve-

locity Vt for the dynamic sharp indentation problem and indicates the point at which the kinetic energy lost
to the target becomes significant. It was found that the peak indentation depth and the contact time showed
good agreement with the theoretical results up to impact velocities 	 0.1Vt, while the rebound velocity
deviated from the analytical prediction when the impact velocity exceeded 	 0.01Vt. It appears that
quantities associated with the loading phase (e.g. peak depth) show good agreement up to 	 0.1Vt, while
quantities associated with the rebound (e.g. rebound velocity) show good agreement only up to 	 0.01Vt.

Rate-dependent plasticity has the effect of increasing the average contact pressure required for inden-
tation, and increases the resistance to indentation. For the case of rate-dependent response in the impact
problem the relationship between load and depth is no longer parabolic, and thus Kick’s law is not valid

Fig. 16. Normalized constant C=C0 vs. the indentation rate parameter _hh=h.
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under these conditions. The problem can be solved by incorporating the relationship between the motion of
the indenter and the dynamic flow properties of the material into the equation of motion for the indenter.
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